Nanomaterial Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge
Nanomaterials of varying compositions and morphologies are of interest for many applications from catalysis to optics, but the synthesis of nanomaterials and their scale-up are most often time-consuming and Edisonian processes. Information gleaned from the scientific literature can help inform and a...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2020-06, Vol.60 (6), p.2876-2887 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2887 |
---|---|
container_issue | 6 |
container_start_page | 2876 |
container_title | Journal of chemical information and modeling |
container_volume | 60 |
creator | Hiszpanski, Anna M Gallagher, Brian Chellappan, Karthik Li, Peggy Liu, Shusen Kim, Hyojin Han, Jinkyu Kailkhura, Bhavya Buttler, David J Han, Thomas Yong-Jin |
description | Nanomaterials of varying compositions and morphologies are of interest for many applications from catalysis to optics, but the synthesis of nanomaterials and their scale-up are most often time-consuming and Edisonian processes. Information gleaned from the scientific literature can help inform and accelerate nanomaterials development, but again, searching the literature and digesting the information are time-consuming manual processes for researchers. To help address these challenges, we developed scientific article-processing tools that extract and structure information from the text and figures of nanomaterials articles, thereby enabling the creation of a personalized knowledgebase for nanomaterials synthesis that can be mined to help inform further nanomaterials development. Starting with a corpus of ∼35k nanomaterials-related articles, we developed models to classify articles according to the nanomaterial composition and morphology, extract synthesis protocols from within the articles' text, and extract, normalize, and categorize chemical terms within synthesis protocols. We demonstrate the efficiency of the proposed pipeline on an expert-labeled set of nanomaterials synthesis articles, achieving 100% accuracy on composition prediction, 95% accuracy on morphology prediction, 0.99 AUC on protocol identification, and up to a 0.87 F1-score on chemical entity recognition. In addition to processing articles' text, microscopy images of nanomaterials within the articles are also automatically identified and analyzed to determine the nanomaterials' morphologies and size distributions. To enable users to easily explore the database, we developed a complementary browser-based visualization tool that provides flexibility in comparing across subsets of articles of interest. We use these tools and information to identify trends in nanomaterials synthesis, such as the correlation of certain reagents with various nanomaterial morphologies, which is useful in guiding hypotheses and reducing the potential parameter space during experimental design. |
doi_str_mv | 10.1021/acs.jcim.0c00199 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1669214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390147306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-a078bc421a14727cd661d2193a67864722abdf81a6be8677ea03287bbbdc7d83</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi1ERUvhzglZcOmBBH9s_XGsqpZWDXBIhbhZ3llv4mjXLrZXEI788jok5cDJY-uZd-R5EHpDyZwSRj9ayPMN-HFOgBCq9TN0Qs8bPdOCfH_-VJ9rcYxe5rwhhHMt2At0zBlTQlF1gv58sSGOtrjk7YCX21DWLvuMb0P2q3XJuE9xxJ8trH1weOFsCj6scOzxErwLxfce8EUqHgaXcbvFV79KslAq9AEvS5qgTOnvxYYOf_N5soP_vYu4C_Hn4LqVe4WOejtk9_pwnqL766v7y5vZ4uun28uLxQwawcrMEqlaaBi1tJFMQicE7RjV3AqpRH1itu16Ra1onRJSOks4U7Jt2w5kp_gperePjbl4k8EXB2uIITgohgqhGW0qdLaHHlL8MblczOgzuGGwwcUpG8Y1qeM5ERV9_x-6iVMK9QeGNVRoLeuuK0X2FKSYc3K9eUh-tGlrKDE7h6Y6NDuH5uCwtrw9BE_t6Lp_DU_S-CM4GpqO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416997962</pqid></control><display><type>article</type><title>Nanomaterial Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge</title><source>American Chemical Society Journals</source><creator>Hiszpanski, Anna M ; Gallagher, Brian ; Chellappan, Karthik ; Li, Peggy ; Liu, Shusen ; Kim, Hyojin ; Han, Jinkyu ; Kailkhura, Bhavya ; Buttler, David J ; Han, Thomas Yong-Jin</creator><creatorcontrib>Hiszpanski, Anna M ; Gallagher, Brian ; Chellappan, Karthik ; Li, Peggy ; Liu, Shusen ; Kim, Hyojin ; Han, Jinkyu ; Kailkhura, Bhavya ; Buttler, David J ; Han, Thomas Yong-Jin ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Nanomaterials of varying compositions and morphologies are of interest for many applications from catalysis to optics, but the synthesis of nanomaterials and their scale-up are most often time-consuming and Edisonian processes. Information gleaned from the scientific literature can help inform and accelerate nanomaterials development, but again, searching the literature and digesting the information are time-consuming manual processes for researchers. To help address these challenges, we developed scientific article-processing tools that extract and structure information from the text and figures of nanomaterials articles, thereby enabling the creation of a personalized knowledgebase for nanomaterials synthesis that can be mined to help inform further nanomaterials development. Starting with a corpus of ∼35k nanomaterials-related articles, we developed models to classify articles according to the nanomaterial composition and morphology, extract synthesis protocols from within the articles' text, and extract, normalize, and categorize chemical terms within synthesis protocols. We demonstrate the efficiency of the proposed pipeline on an expert-labeled set of nanomaterials synthesis articles, achieving 100% accuracy on composition prediction, 95% accuracy on morphology prediction, 0.99 AUC on protocol identification, and up to a 0.87 F1-score on chemical entity recognition. In addition to processing articles' text, microscopy images of nanomaterials within the articles are also automatically identified and analyzed to determine the nanomaterials' morphologies and size distributions. To enable users to easily explore the database, we developed a complementary browser-based visualization tool that provides flexibility in comparing across subsets of articles of interest. We use these tools and information to identify trends in nanomaterials synthesis, such as the correlation of certain reagents with various nanomaterial morphologies, which is useful in guiding hypotheses and reducing the potential parameter space during experimental design.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.0c00199</identifier><identifier>PMID: 32286818</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>biological databases ; Chemical synthesis ; Composition ; Design of experiments ; Design parameters ; gold ; Knowledge bases (artificial intelligence) ; Machine learning ; MATERIALS SCIENCE ; Morphology ; nanocubes ; Nanomaterials ; Object recognition ; Reagents ; Scientific papers</subject><ispartof>Journal of chemical information and modeling, 2020-06, Vol.60 (6), p.2876-2887</ispartof><rights>Copyright American Chemical Society Jun 22, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-a078bc421a14727cd661d2193a67864722abdf81a6be8677ea03287bbbdc7d83</citedby><cites>FETCH-LOGICAL-c462t-a078bc421a14727cd661d2193a67864722abdf81a6be8677ea03287bbbdc7d83</cites><orcidid>0000-0002-6374-116X ; 0000-0002-3000-2782 ; 0000000230002782 ; 000000026374116X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32286818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1669214$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiszpanski, Anna M</creatorcontrib><creatorcontrib>Gallagher, Brian</creatorcontrib><creatorcontrib>Chellappan, Karthik</creatorcontrib><creatorcontrib>Li, Peggy</creatorcontrib><creatorcontrib>Liu, Shusen</creatorcontrib><creatorcontrib>Kim, Hyojin</creatorcontrib><creatorcontrib>Han, Jinkyu</creatorcontrib><creatorcontrib>Kailkhura, Bhavya</creatorcontrib><creatorcontrib>Buttler, David J</creatorcontrib><creatorcontrib>Han, Thomas Yong-Jin</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Nanomaterial Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge</title><title>Journal of chemical information and modeling</title><addtitle>J Chem Inf Model</addtitle><description>Nanomaterials of varying compositions and morphologies are of interest for many applications from catalysis to optics, but the synthesis of nanomaterials and their scale-up are most often time-consuming and Edisonian processes. Information gleaned from the scientific literature can help inform and accelerate nanomaterials development, but again, searching the literature and digesting the information are time-consuming manual processes for researchers. To help address these challenges, we developed scientific article-processing tools that extract and structure information from the text and figures of nanomaterials articles, thereby enabling the creation of a personalized knowledgebase for nanomaterials synthesis that can be mined to help inform further nanomaterials development. Starting with a corpus of ∼35k nanomaterials-related articles, we developed models to classify articles according to the nanomaterial composition and morphology, extract synthesis protocols from within the articles' text, and extract, normalize, and categorize chemical terms within synthesis protocols. We demonstrate the efficiency of the proposed pipeline on an expert-labeled set of nanomaterials synthesis articles, achieving 100% accuracy on composition prediction, 95% accuracy on morphology prediction, 0.99 AUC on protocol identification, and up to a 0.87 F1-score on chemical entity recognition. In addition to processing articles' text, microscopy images of nanomaterials within the articles are also automatically identified and analyzed to determine the nanomaterials' morphologies and size distributions. To enable users to easily explore the database, we developed a complementary browser-based visualization tool that provides flexibility in comparing across subsets of articles of interest. We use these tools and information to identify trends in nanomaterials synthesis, such as the correlation of certain reagents with various nanomaterial morphologies, which is useful in guiding hypotheses and reducing the potential parameter space during experimental design.</description><subject>biological databases</subject><subject>Chemical synthesis</subject><subject>Composition</subject><subject>Design of experiments</subject><subject>Design parameters</subject><subject>gold</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Machine learning</subject><subject>MATERIALS SCIENCE</subject><subject>Morphology</subject><subject>nanocubes</subject><subject>Nanomaterials</subject><subject>Object recognition</subject><subject>Reagents</subject><subject>Scientific papers</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQhi1ERUvhzglZcOmBBH9s_XGsqpZWDXBIhbhZ3llv4mjXLrZXEI788jok5cDJY-uZd-R5EHpDyZwSRj9ayPMN-HFOgBCq9TN0Qs8bPdOCfH_-VJ9rcYxe5rwhhHMt2At0zBlTQlF1gv58sSGOtrjk7YCX21DWLvuMb0P2q3XJuE9xxJ8trH1weOFsCj6scOzxErwLxfce8EUqHgaXcbvFV79KslAq9AEvS5qgTOnvxYYOf_N5soP_vYu4C_Hn4LqVe4WOejtk9_pwnqL766v7y5vZ4uun28uLxQwawcrMEqlaaBi1tJFMQicE7RjV3AqpRH1itu16Ra1onRJSOks4U7Jt2w5kp_gperePjbl4k8EXB2uIITgohgqhGW0qdLaHHlL8MblczOgzuGGwwcUpG8Y1qeM5ERV9_x-6iVMK9QeGNVRoLeuuK0X2FKSYc3K9eUh-tGlrKDE7h6Y6NDuH5uCwtrw9BE_t6Lp_DU_S-CM4GpqO</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Hiszpanski, Anna M</creator><creator>Gallagher, Brian</creator><creator>Chellappan, Karthik</creator><creator>Li, Peggy</creator><creator>Liu, Shusen</creator><creator>Kim, Hyojin</creator><creator>Han, Jinkyu</creator><creator>Kailkhura, Bhavya</creator><creator>Buttler, David J</creator><creator>Han, Thomas Yong-Jin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6374-116X</orcidid><orcidid>https://orcid.org/0000-0002-3000-2782</orcidid><orcidid>https://orcid.org/0000000230002782</orcidid><orcidid>https://orcid.org/000000026374116X</orcidid></search><sort><creationdate>20200622</creationdate><title>Nanomaterial Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge</title><author>Hiszpanski, Anna M ; Gallagher, Brian ; Chellappan, Karthik ; Li, Peggy ; Liu, Shusen ; Kim, Hyojin ; Han, Jinkyu ; Kailkhura, Bhavya ; Buttler, David J ; Han, Thomas Yong-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-a078bc421a14727cd661d2193a67864722abdf81a6be8677ea03287bbbdc7d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biological databases</topic><topic>Chemical synthesis</topic><topic>Composition</topic><topic>Design of experiments</topic><topic>Design parameters</topic><topic>gold</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Machine learning</topic><topic>MATERIALS SCIENCE</topic><topic>Morphology</topic><topic>nanocubes</topic><topic>Nanomaterials</topic><topic>Object recognition</topic><topic>Reagents</topic><topic>Scientific papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiszpanski, Anna M</creatorcontrib><creatorcontrib>Gallagher, Brian</creatorcontrib><creatorcontrib>Chellappan, Karthik</creatorcontrib><creatorcontrib>Li, Peggy</creatorcontrib><creatorcontrib>Liu, Shusen</creatorcontrib><creatorcontrib>Kim, Hyojin</creatorcontrib><creatorcontrib>Han, Jinkyu</creatorcontrib><creatorcontrib>Kailkhura, Bhavya</creatorcontrib><creatorcontrib>Buttler, David J</creatorcontrib><creatorcontrib>Han, Thomas Yong-Jin</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiszpanski, Anna M</au><au>Gallagher, Brian</au><au>Chellappan, Karthik</au><au>Li, Peggy</au><au>Liu, Shusen</au><au>Kim, Hyojin</au><au>Han, Jinkyu</au><au>Kailkhura, Bhavya</au><au>Buttler, David J</au><au>Han, Thomas Yong-Jin</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanomaterial Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J Chem Inf Model</addtitle><date>2020-06-22</date><risdate>2020</risdate><volume>60</volume><issue>6</issue><spage>2876</spage><epage>2887</epage><pages>2876-2887</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Nanomaterials of varying compositions and morphologies are of interest for many applications from catalysis to optics, but the synthesis of nanomaterials and their scale-up are most often time-consuming and Edisonian processes. Information gleaned from the scientific literature can help inform and accelerate nanomaterials development, but again, searching the literature and digesting the information are time-consuming manual processes for researchers. To help address these challenges, we developed scientific article-processing tools that extract and structure information from the text and figures of nanomaterials articles, thereby enabling the creation of a personalized knowledgebase for nanomaterials synthesis that can be mined to help inform further nanomaterials development. Starting with a corpus of ∼35k nanomaterials-related articles, we developed models to classify articles according to the nanomaterial composition and morphology, extract synthesis protocols from within the articles' text, and extract, normalize, and categorize chemical terms within synthesis protocols. We demonstrate the efficiency of the proposed pipeline on an expert-labeled set of nanomaterials synthesis articles, achieving 100% accuracy on composition prediction, 95% accuracy on morphology prediction, 0.99 AUC on protocol identification, and up to a 0.87 F1-score on chemical entity recognition. In addition to processing articles' text, microscopy images of nanomaterials within the articles are also automatically identified and analyzed to determine the nanomaterials' morphologies and size distributions. To enable users to easily explore the database, we developed a complementary browser-based visualization tool that provides flexibility in comparing across subsets of articles of interest. We use these tools and information to identify trends in nanomaterials synthesis, such as the correlation of certain reagents with various nanomaterial morphologies, which is useful in guiding hypotheses and reducing the potential parameter space during experimental design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32286818</pmid><doi>10.1021/acs.jcim.0c00199</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6374-116X</orcidid><orcidid>https://orcid.org/0000-0002-3000-2782</orcidid><orcidid>https://orcid.org/0000000230002782</orcidid><orcidid>https://orcid.org/000000026374116X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2020-06, Vol.60 (6), p.2876-2887 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_osti_scitechconnect_1669214 |
source | American Chemical Society Journals |
subjects | biological databases Chemical synthesis Composition Design of experiments Design parameters gold Knowledge bases (artificial intelligence) Machine learning MATERIALS SCIENCE Morphology nanocubes Nanomaterials Object recognition Reagents Scientific papers |
title | Nanomaterial Synthesis Insights from Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanomaterial%20Synthesis%20Insights%20from%20Machine%20Learning%20of%20Scientific%20Articles%20by%20Extracting,%20Structuring,%20and%20Visualizing%20Knowledge&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Hiszpanski,%20Anna%20M&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-06-22&rft.volume=60&rft.issue=6&rft.spage=2876&rft.epage=2887&rft.pages=2876-2887&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.0c00199&rft_dat=%3Cproquest_osti_%3E2390147306%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416997962&rft_id=info:pmid/32286818&rfr_iscdi=true |