A mathematical model of asynchronous data flow in parallel computers
We present a simplified model of data flow on processors in a high-performance computing framework involving computations necessitating inter-processor communications. From this ordinary differential model, we take its asymptotic limit, resulting in a model which treats the computer as a continuum o...
Gespeichert in:
Veröffentlicht in: | IMA journal of applied mathematics 2020-12, Vol.85 (6), p.865-891 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 891 |
---|---|
container_issue | 6 |
container_start_page | 865 |
container_title | IMA journal of applied mathematics |
container_volume | 85 |
creator | Barnard, Richard C Huang, Kai Hauck, Cory |
description | We present a simplified model of data flow on processors in a high-performance computing framework involving computations necessitating inter-processor communications. From this ordinary differential model, we take its asymptotic limit, resulting in a model which treats the computer as a continuum of processors and data flow as an Eulerian fluid governed by a conservation law. We derive a Hamilton–Jacobi equation associated with this conservation law for which the existence and uniqueness of solutions can be proven. We then present the results of numerical experiments for both discrete and continuum models; these show a qualitative agreement between the two and the effect of variations in the computing environment’s processing capabilities on the progress of the modelled computation. |
doi_str_mv | 10.1093/imamat/hxaa031 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1665914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imamat_hxaa031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-9eaf049caea26e0e8f7661d6ed6a2890c48ae9bd2bbc89a6c2b3ef9c320b20ac3</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EEqWwMlvsaZ8_6sZjVaAgVWKB2Xp5sZWgJK5iV9B_T1C73Luce4fD2KOAhQCrlm2PPeZl84sISlyxmdBGF8oofc1mINey0NbALbtL6RsAxGoNM_a84dOo8VO0hB3vY-07HgPHdBqoGeMQj4nXmJGHLv7wduAHHLHrJopifzhmP6Z7dhOwS_7h0nP29fryuX0r9h-79-1mX5A0JhfWYwBtCT1K48GXYW2MqI2vDcrSAukSva1qWVVUWjQkK-WDJSWhkoCk5uzp_BtTbl2iNntqKA6Dp-yEMSsr9AQtzhCNMaXRB3cYJzXjyQlw_6LcWZS7iFJ_vJZfxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A mathematical model of asynchronous data flow in parallel computers</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Barnard, Richard C ; Huang, Kai ; Hauck, Cory</creator><creatorcontrib>Barnard, Richard C ; Huang, Kai ; Hauck, Cory</creatorcontrib><description>We present a simplified model of data flow on processors in a high-performance computing framework involving computations necessitating inter-processor communications. From this ordinary differential model, we take its asymptotic limit, resulting in a model which treats the computer as a continuum of processors and data flow as an Eulerian fluid governed by a conservation law. We derive a Hamilton–Jacobi equation associated with this conservation law for which the existence and uniqueness of solutions can be proven. We then present the results of numerical experiments for both discrete and continuum models; these show a qualitative agreement between the two and the effect of variations in the computing environment’s processing capabilities on the progress of the modelled computation.</description><identifier>ISSN: 0272-4960</identifier><identifier>EISSN: 1464-3634</identifier><identifier>DOI: 10.1093/imamat/hxaa031</identifier><language>eng</language><publisher>United Kingdom: Oxford University Press</publisher><ispartof>IMA journal of applied mathematics, 2020-12, Vol.85 (6), p.865-891</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-9eaf049caea26e0e8f7661d6ed6a2890c48ae9bd2bbc89a6c2b3ef9c320b20ac3</citedby><cites>FETCH-LOGICAL-c266t-9eaf049caea26e0e8f7661d6ed6a2890c48ae9bd2bbc89a6c2b3ef9c320b20ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1665914$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barnard, Richard C</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Hauck, Cory</creatorcontrib><title>A mathematical model of asynchronous data flow in parallel computers</title><title>IMA journal of applied mathematics</title><description>We present a simplified model of data flow on processors in a high-performance computing framework involving computations necessitating inter-processor communications. From this ordinary differential model, we take its asymptotic limit, resulting in a model which treats the computer as a continuum of processors and data flow as an Eulerian fluid governed by a conservation law. We derive a Hamilton–Jacobi equation associated with this conservation law for which the existence and uniqueness of solutions can be proven. We then present the results of numerical experiments for both discrete and continuum models; these show a qualitative agreement between the two and the effect of variations in the computing environment’s processing capabilities on the progress of the modelled computation.</description><issn>0272-4960</issn><issn>1464-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EEqWwMlvsaZ8_6sZjVaAgVWKB2Xp5sZWgJK5iV9B_T1C73Luce4fD2KOAhQCrlm2PPeZl84sISlyxmdBGF8oofc1mINey0NbALbtL6RsAxGoNM_a84dOo8VO0hB3vY-07HgPHdBqoGeMQj4nXmJGHLv7wduAHHLHrJopifzhmP6Z7dhOwS_7h0nP29fryuX0r9h-79-1mX5A0JhfWYwBtCT1K48GXYW2MqI2vDcrSAukSva1qWVVUWjQkK-WDJSWhkoCk5uzp_BtTbl2iNntqKA6Dp-yEMSsr9AQtzhCNMaXRB3cYJzXjyQlw_6LcWZS7iFJ_vJZfxA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Barnard, Richard C</creator><creator>Huang, Kai</creator><creator>Hauck, Cory</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20201201</creationdate><title>A mathematical model of asynchronous data flow in parallel computers</title><author>Barnard, Richard C ; Huang, Kai ; Hauck, Cory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-9eaf049caea26e0e8f7661d6ed6a2890c48ae9bd2bbc89a6c2b3ef9c320b20ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnard, Richard C</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Hauck, Cory</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IMA journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnard, Richard C</au><au>Huang, Kai</au><au>Hauck, Cory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model of asynchronous data flow in parallel computers</atitle><jtitle>IMA journal of applied mathematics</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>85</volume><issue>6</issue><spage>865</spage><epage>891</epage><pages>865-891</pages><issn>0272-4960</issn><eissn>1464-3634</eissn><abstract>We present a simplified model of data flow on processors in a high-performance computing framework involving computations necessitating inter-processor communications. From this ordinary differential model, we take its asymptotic limit, resulting in a model which treats the computer as a continuum of processors and data flow as an Eulerian fluid governed by a conservation law. We derive a Hamilton–Jacobi equation associated with this conservation law for which the existence and uniqueness of solutions can be proven. We then present the results of numerical experiments for both discrete and continuum models; these show a qualitative agreement between the two and the effect of variations in the computing environment’s processing capabilities on the progress of the modelled computation.</abstract><cop>United Kingdom</cop><pub>Oxford University Press</pub><doi>10.1093/imamat/hxaa031</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4960 |
ispartof | IMA journal of applied mathematics, 2020-12, Vol.85 (6), p.865-891 |
issn | 0272-4960 1464-3634 |
language | eng |
recordid | cdi_osti_scitechconnect_1665914 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | A mathematical model of asynchronous data flow in parallel computers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20of%20asynchronous%20data%20flow%20in%20parallel%20computers&rft.jtitle=IMA%20journal%20of%20applied%20mathematics&rft.au=Barnard,%20Richard%20C&rft.date=2020-12-01&rft.volume=85&rft.issue=6&rft.spage=865&rft.epage=891&rft.pages=865-891&rft.issn=0272-4960&rft.eissn=1464-3634&rft_id=info:doi/10.1093/imamat/hxaa031&rft_dat=%3Ccrossref_osti_%3E10_1093_imamat_hxaa031%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |