A mathematical model of asynchronous data flow in parallel computers

We present a simplified model of data flow on processors in a high-performance computing framework involving computations necessitating inter-processor communications. From this ordinary differential model, we take its asymptotic limit, resulting in a model which treats the computer as a continuum o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of applied mathematics 2020-12, Vol.85 (6), p.865-891
Hauptverfasser: Barnard, Richard C, Huang, Kai, Hauck, Cory
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 891
container_issue 6
container_start_page 865
container_title IMA journal of applied mathematics
container_volume 85
creator Barnard, Richard C
Huang, Kai
Hauck, Cory
description We present a simplified model of data flow on processors in a high-performance computing framework involving computations necessitating inter-processor communications. From this ordinary differential model, we take its asymptotic limit, resulting in a model which treats the computer as a continuum of processors and data flow as an Eulerian fluid governed by a conservation law. We derive a Hamilton–Jacobi equation associated with this conservation law for which the existence and uniqueness of solutions can be proven. We then present the results of numerical experiments for both discrete and continuum models; these show a qualitative agreement between the two and the effect of variations in the computing environment’s processing capabilities on the progress of the modelled computation.
doi_str_mv 10.1093/imamat/hxaa031
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1665914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imamat_hxaa031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-9eaf049caea26e0e8f7661d6ed6a2890c48ae9bd2bbc89a6c2b3ef9c320b20ac3</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EEqWwMlvsaZ8_6sZjVaAgVWKB2Xp5sZWgJK5iV9B_T1C73Luce4fD2KOAhQCrlm2PPeZl84sISlyxmdBGF8oofc1mINey0NbALbtL6RsAxGoNM_a84dOo8VO0hB3vY-07HgPHdBqoGeMQj4nXmJGHLv7wduAHHLHrJopifzhmP6Z7dhOwS_7h0nP29fryuX0r9h-79-1mX5A0JhfWYwBtCT1K48GXYW2MqI2vDcrSAukSva1qWVVUWjQkK-WDJSWhkoCk5uzp_BtTbl2iNntqKA6Dp-yEMSsr9AQtzhCNMaXRB3cYJzXjyQlw_6LcWZS7iFJ_vJZfxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A mathematical model of asynchronous data flow in parallel computers</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Barnard, Richard C ; Huang, Kai ; Hauck, Cory</creator><creatorcontrib>Barnard, Richard C ; Huang, Kai ; Hauck, Cory</creatorcontrib><description>We present a simplified model of data flow on processors in a high-performance computing framework involving computations necessitating inter-processor communications. From this ordinary differential model, we take its asymptotic limit, resulting in a model which treats the computer as a continuum of processors and data flow as an Eulerian fluid governed by a conservation law. We derive a Hamilton–Jacobi equation associated with this conservation law for which the existence and uniqueness of solutions can be proven. We then present the results of numerical experiments for both discrete and continuum models; these show a qualitative agreement between the two and the effect of variations in the computing environment’s processing capabilities on the progress of the modelled computation.</description><identifier>ISSN: 0272-4960</identifier><identifier>EISSN: 1464-3634</identifier><identifier>DOI: 10.1093/imamat/hxaa031</identifier><language>eng</language><publisher>United Kingdom: Oxford University Press</publisher><ispartof>IMA journal of applied mathematics, 2020-12, Vol.85 (6), p.865-891</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-9eaf049caea26e0e8f7661d6ed6a2890c48ae9bd2bbc89a6c2b3ef9c320b20ac3</citedby><cites>FETCH-LOGICAL-c266t-9eaf049caea26e0e8f7661d6ed6a2890c48ae9bd2bbc89a6c2b3ef9c320b20ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1665914$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barnard, Richard C</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Hauck, Cory</creatorcontrib><title>A mathematical model of asynchronous data flow in parallel computers</title><title>IMA journal of applied mathematics</title><description>We present a simplified model of data flow on processors in a high-performance computing framework involving computations necessitating inter-processor communications. From this ordinary differential model, we take its asymptotic limit, resulting in a model which treats the computer as a continuum of processors and data flow as an Eulerian fluid governed by a conservation law. We derive a Hamilton–Jacobi equation associated with this conservation law for which the existence and uniqueness of solutions can be proven. We then present the results of numerical experiments for both discrete and continuum models; these show a qualitative agreement between the two and the effect of variations in the computing environment’s processing capabilities on the progress of the modelled computation.</description><issn>0272-4960</issn><issn>1464-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EEqWwMlvsaZ8_6sZjVaAgVWKB2Xp5sZWgJK5iV9B_T1C73Luce4fD2KOAhQCrlm2PPeZl84sISlyxmdBGF8oofc1mINey0NbALbtL6RsAxGoNM_a84dOo8VO0hB3vY-07HgPHdBqoGeMQj4nXmJGHLv7wduAHHLHrJopifzhmP6Z7dhOwS_7h0nP29fryuX0r9h-79-1mX5A0JhfWYwBtCT1K48GXYW2MqI2vDcrSAukSva1qWVVUWjQkK-WDJSWhkoCk5uzp_BtTbl2iNntqKA6Dp-yEMSsr9AQtzhCNMaXRB3cYJzXjyQlw_6LcWZS7iFJ_vJZfxA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Barnard, Richard C</creator><creator>Huang, Kai</creator><creator>Hauck, Cory</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20201201</creationdate><title>A mathematical model of asynchronous data flow in parallel computers</title><author>Barnard, Richard C ; Huang, Kai ; Hauck, Cory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-9eaf049caea26e0e8f7661d6ed6a2890c48ae9bd2bbc89a6c2b3ef9c320b20ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnard, Richard C</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Hauck, Cory</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IMA journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnard, Richard C</au><au>Huang, Kai</au><au>Hauck, Cory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model of asynchronous data flow in parallel computers</atitle><jtitle>IMA journal of applied mathematics</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>85</volume><issue>6</issue><spage>865</spage><epage>891</epage><pages>865-891</pages><issn>0272-4960</issn><eissn>1464-3634</eissn><abstract>We present a simplified model of data flow on processors in a high-performance computing framework involving computations necessitating inter-processor communications. From this ordinary differential model, we take its asymptotic limit, resulting in a model which treats the computer as a continuum of processors and data flow as an Eulerian fluid governed by a conservation law. We derive a Hamilton–Jacobi equation associated with this conservation law for which the existence and uniqueness of solutions can be proven. We then present the results of numerical experiments for both discrete and continuum models; these show a qualitative agreement between the two and the effect of variations in the computing environment’s processing capabilities on the progress of the modelled computation.</abstract><cop>United Kingdom</cop><pub>Oxford University Press</pub><doi>10.1093/imamat/hxaa031</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4960
ispartof IMA journal of applied mathematics, 2020-12, Vol.85 (6), p.865-891
issn 0272-4960
1464-3634
language eng
recordid cdi_osti_scitechconnect_1665914
source Oxford University Press Journals All Titles (1996-Current)
title A mathematical model of asynchronous data flow in parallel computers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20of%20asynchronous%20data%20flow%20in%20parallel%20computers&rft.jtitle=IMA%20journal%20of%20applied%20mathematics&rft.au=Barnard,%20Richard%20C&rft.date=2020-12-01&rft.volume=85&rft.issue=6&rft.spage=865&rft.epage=891&rft.pages=865-891&rft.issn=0272-4960&rft.eissn=1464-3634&rft_id=info:doi/10.1093/imamat/hxaa031&rft_dat=%3Ccrossref_osti_%3E10_1093_imamat_hxaa031%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true