Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations
The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+ and Eigen H9...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-09, Vol.153 (12), p.124506-124506 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124506 |
---|---|
container_issue | 12 |
container_start_page | 124506 |
container_title | The Journal of chemical physics |
container_volume | 153 |
creator | Carpenter, William B. Yu, Qi Hack, John H. Dereka, Bogdan Bowman, Joel M. Tokmakoff, Andrei |
description | The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+ and Eigen H9O4+ ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure–spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm−1 is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations. |
doi_str_mv | 10.1063/5.0020279 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1664558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448405272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-6a953d862bc468219e05504b6f82991f6791a5028b3e267f6cd470fac49f25893</originalsourceid><addsrcrecordid>eNp90UtLAzEQB_AgCtbHwW8Q9KLC6iRNsslR6qsgCD6PIU0Td2W7qZus4rc3taKg4Glg-DHMfwahHQJHBMTwmB8BUKClWkEDAlIVpVCwiga5SwolQKyjjRifAYCUlA3Q46mzYVq3TzhVDtNTPL7Bce5s6voZDv6za156F_qI511IocVvdapwVT9VReNeXYMfbkfnxw-jMbamsX1jUh3auIXWvGmi2_6qm-j-_OxudFlcXV-MRydXhWWUpkIYxYdTKejEMiEpUQ44BzYRXlKliBelIoYDlZOho6L0wk5ZCd5YpjzlUg030e5yboip1tHWydnKhrbNETQRgnEuM9pfopwgZ4lJz-poXdOYdhFMU8YkA05LmuneL_oc-q7NERaKKaUkK7M6WCrbhRg75_W8q2eme9cE9OIPmuuvP2R7uLSL5T6P841fQ_cD9Xzq_8N_J38A9IOSYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444999847</pqid></control><display><type>article</type><title>Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Carpenter, William B. ; Yu, Qi ; Hack, John H. ; Dereka, Bogdan ; Bowman, Joel M. ; Tokmakoff, Andrei</creator><creatorcontrib>Carpenter, William B. ; Yu, Qi ; Hack, John H. ; Dereka, Bogdan ; Bowman, Joel M. ; Tokmakoff, Andrei</creatorcontrib><description>The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+ and Eigen H9O4+ ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure–spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm−1 is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0020279</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anharmonicity ; Asymmetry ; Configuration interaction ; Coupled modes ; Heterogeneity ; Hydrogen bonding ; Infrared spectroscopy ; Mathematical analysis ; Physics ; Protons ; Room temperature ; Self consistent fields</subject><ispartof>The Journal of chemical physics, 2020-09, Vol.153 (12), p.124506-124506</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-6a953d862bc468219e05504b6f82991f6791a5028b3e267f6cd470fac49f25893</citedby><cites>FETCH-LOGICAL-c422t-6a953d862bc468219e05504b6f82991f6791a5028b3e267f6cd470fac49f25893</cites><orcidid>0000-0002-6174-1035 ; 0000-0003-2895-7915 ; 0000-0002-2030-0671 ; 0000-0001-9692-2672 ; 0000-0003-0042-0921 ; 0000-0002-2434-8744 ; 0000000261741035 ; 0000000300420921 ; 0000000328957915 ; 0000000224348744 ; 0000000220300671 ; 0000000196922672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0020279$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4510,27923,27924,76155</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1664558$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carpenter, William B.</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Hack, John H.</creatorcontrib><creatorcontrib>Dereka, Bogdan</creatorcontrib><creatorcontrib>Bowman, Joel M.</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><title>Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations</title><title>The Journal of chemical physics</title><description>The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+ and Eigen H9O4+ ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure–spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm−1 is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations.</description><subject>Anharmonicity</subject><subject>Asymmetry</subject><subject>Configuration interaction</subject><subject>Coupled modes</subject><subject>Heterogeneity</subject><subject>Hydrogen bonding</subject><subject>Infrared spectroscopy</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Protons</subject><subject>Room temperature</subject><subject>Self consistent fields</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90UtLAzEQB_AgCtbHwW8Q9KLC6iRNsslR6qsgCD6PIU0Td2W7qZus4rc3taKg4Glg-DHMfwahHQJHBMTwmB8BUKClWkEDAlIVpVCwiga5SwolQKyjjRifAYCUlA3Q46mzYVq3TzhVDtNTPL7Bce5s6voZDv6za156F_qI511IocVvdapwVT9VReNeXYMfbkfnxw-jMbamsX1jUh3auIXWvGmi2_6qm-j-_OxudFlcXV-MRydXhWWUpkIYxYdTKejEMiEpUQ44BzYRXlKliBelIoYDlZOho6L0wk5ZCd5YpjzlUg030e5yboip1tHWydnKhrbNETQRgnEuM9pfopwgZ4lJz-poXdOYdhFMU8YkA05LmuneL_oc-q7NERaKKaUkK7M6WCrbhRg75_W8q2eme9cE9OIPmuuvP2R7uLSL5T6P841fQ_cD9Xzq_8N_J38A9IOSYA</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Carpenter, William B.</creator><creator>Yu, Qi</creator><creator>Hack, John H.</creator><creator>Dereka, Bogdan</creator><creator>Bowman, Joel M.</creator><creator>Tokmakoff, Andrei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6174-1035</orcidid><orcidid>https://orcid.org/0000-0003-2895-7915</orcidid><orcidid>https://orcid.org/0000-0002-2030-0671</orcidid><orcidid>https://orcid.org/0000-0001-9692-2672</orcidid><orcidid>https://orcid.org/0000-0003-0042-0921</orcidid><orcidid>https://orcid.org/0000-0002-2434-8744</orcidid><orcidid>https://orcid.org/0000000261741035</orcidid><orcidid>https://orcid.org/0000000300420921</orcidid><orcidid>https://orcid.org/0000000328957915</orcidid><orcidid>https://orcid.org/0000000224348744</orcidid><orcidid>https://orcid.org/0000000220300671</orcidid><orcidid>https://orcid.org/0000000196922672</orcidid></search><sort><creationdate>20200928</creationdate><title>Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations</title><author>Carpenter, William B. ; Yu, Qi ; Hack, John H. ; Dereka, Bogdan ; Bowman, Joel M. ; Tokmakoff, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-6a953d862bc468219e05504b6f82991f6791a5028b3e267f6cd470fac49f25893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anharmonicity</topic><topic>Asymmetry</topic><topic>Configuration interaction</topic><topic>Coupled modes</topic><topic>Heterogeneity</topic><topic>Hydrogen bonding</topic><topic>Infrared spectroscopy</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Protons</topic><topic>Room temperature</topic><topic>Self consistent fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpenter, William B.</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Hack, John H.</creatorcontrib><creatorcontrib>Dereka, Bogdan</creatorcontrib><creatorcontrib>Bowman, Joel M.</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpenter, William B.</au><au>Yu, Qi</au><au>Hack, John H.</au><au>Dereka, Bogdan</au><au>Bowman, Joel M.</au><au>Tokmakoff, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-09-28</date><risdate>2020</risdate><volume>153</volume><issue>12</issue><spage>124506</spage><epage>124506</epage><pages>124506-124506</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+ and Eigen H9O4+ ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure–spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm−1 is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020279</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6174-1035</orcidid><orcidid>https://orcid.org/0000-0003-2895-7915</orcidid><orcidid>https://orcid.org/0000-0002-2030-0671</orcidid><orcidid>https://orcid.org/0000-0001-9692-2672</orcidid><orcidid>https://orcid.org/0000-0003-0042-0921</orcidid><orcidid>https://orcid.org/0000-0002-2434-8744</orcidid><orcidid>https://orcid.org/0000000261741035</orcidid><orcidid>https://orcid.org/0000000300420921</orcidid><orcidid>https://orcid.org/0000000328957915</orcidid><orcidid>https://orcid.org/0000000224348744</orcidid><orcidid>https://orcid.org/0000000220300671</orcidid><orcidid>https://orcid.org/0000000196922672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-09, Vol.153 (12), p.124506-124506 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_1664558 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anharmonicity Asymmetry Configuration interaction Coupled modes Heterogeneity Hydrogen bonding Infrared spectroscopy Mathematical analysis Physics Protons Room temperature Self consistent fields |
title | Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20the%202D%20IR%20spectrum%20of%20the%20aqueous%20proton%20with%20high-level%20VSCF/VCI%20calculations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Carpenter,%20William%20B.&rft.date=2020-09-28&rft.volume=153&rft.issue=12&rft.spage=124506&rft.epage=124506&rft.pages=124506-124506&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0020279&rft_dat=%3Cproquest_osti_%3E2448405272%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444999847&rft_id=info:pmid/&rfr_iscdi=true |