Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations

The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+ and Eigen H9...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-09, Vol.153 (12), p.124506-124506
Hauptverfasser: Carpenter, William B., Yu, Qi, Hack, John H., Dereka, Bogdan, Bowman, Joel M., Tokmakoff, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124506
container_issue 12
container_start_page 124506
container_title The Journal of chemical physics
container_volume 153
creator Carpenter, William B.
Yu, Qi
Hack, John H.
Dereka, Bogdan
Bowman, Joel M.
Tokmakoff, Andrei
description The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+ and Eigen H9O4+ ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure–spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm−1 is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations.
doi_str_mv 10.1063/5.0020279
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1664558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448405272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-6a953d862bc468219e05504b6f82991f6791a5028b3e267f6cd470fac49f25893</originalsourceid><addsrcrecordid>eNp90UtLAzEQB_AgCtbHwW8Q9KLC6iRNsslR6qsgCD6PIU0Td2W7qZus4rc3taKg4Glg-DHMfwahHQJHBMTwmB8BUKClWkEDAlIVpVCwiga5SwolQKyjjRifAYCUlA3Q46mzYVq3TzhVDtNTPL7Bce5s6voZDv6za156F_qI511IocVvdapwVT9VReNeXYMfbkfnxw-jMbamsX1jUh3auIXWvGmi2_6qm-j-_OxudFlcXV-MRydXhWWUpkIYxYdTKejEMiEpUQ44BzYRXlKliBelIoYDlZOho6L0wk5ZCd5YpjzlUg030e5yboip1tHWydnKhrbNETQRgnEuM9pfopwgZ4lJz-poXdOYdhFMU8YkA05LmuneL_oc-q7NERaKKaUkK7M6WCrbhRg75_W8q2eme9cE9OIPmuuvP2R7uLSL5T6P841fQ_cD9Xzq_8N_J38A9IOSYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444999847</pqid></control><display><type>article</type><title>Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Carpenter, William B. ; Yu, Qi ; Hack, John H. ; Dereka, Bogdan ; Bowman, Joel M. ; Tokmakoff, Andrei</creator><creatorcontrib>Carpenter, William B. ; Yu, Qi ; Hack, John H. ; Dereka, Bogdan ; Bowman, Joel M. ; Tokmakoff, Andrei</creatorcontrib><description>The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+ and Eigen H9O4+ ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure–spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm−1 is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0020279</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anharmonicity ; Asymmetry ; Configuration interaction ; Coupled modes ; Heterogeneity ; Hydrogen bonding ; Infrared spectroscopy ; Mathematical analysis ; Physics ; Protons ; Room temperature ; Self consistent fields</subject><ispartof>The Journal of chemical physics, 2020-09, Vol.153 (12), p.124506-124506</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-6a953d862bc468219e05504b6f82991f6791a5028b3e267f6cd470fac49f25893</citedby><cites>FETCH-LOGICAL-c422t-6a953d862bc468219e05504b6f82991f6791a5028b3e267f6cd470fac49f25893</cites><orcidid>0000-0002-6174-1035 ; 0000-0003-2895-7915 ; 0000-0002-2030-0671 ; 0000-0001-9692-2672 ; 0000-0003-0042-0921 ; 0000-0002-2434-8744 ; 0000000261741035 ; 0000000300420921 ; 0000000328957915 ; 0000000224348744 ; 0000000220300671 ; 0000000196922672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0020279$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4510,27923,27924,76155</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1664558$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carpenter, William B.</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Hack, John H.</creatorcontrib><creatorcontrib>Dereka, Bogdan</creatorcontrib><creatorcontrib>Bowman, Joel M.</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><title>Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations</title><title>The Journal of chemical physics</title><description>The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+ and Eigen H9O4+ ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure–spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm−1 is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations.</description><subject>Anharmonicity</subject><subject>Asymmetry</subject><subject>Configuration interaction</subject><subject>Coupled modes</subject><subject>Heterogeneity</subject><subject>Hydrogen bonding</subject><subject>Infrared spectroscopy</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Protons</subject><subject>Room temperature</subject><subject>Self consistent fields</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90UtLAzEQB_AgCtbHwW8Q9KLC6iRNsslR6qsgCD6PIU0Td2W7qZus4rc3taKg4Glg-DHMfwahHQJHBMTwmB8BUKClWkEDAlIVpVCwiga5SwolQKyjjRifAYCUlA3Q46mzYVq3TzhVDtNTPL7Bce5s6voZDv6za156F_qI511IocVvdapwVT9VReNeXYMfbkfnxw-jMbamsX1jUh3auIXWvGmi2_6qm-j-_OxudFlcXV-MRydXhWWUpkIYxYdTKejEMiEpUQ44BzYRXlKliBelIoYDlZOho6L0wk5ZCd5YpjzlUg030e5yboip1tHWydnKhrbNETQRgnEuM9pfopwgZ4lJz-poXdOYdhFMU8YkA05LmuneL_oc-q7NERaKKaUkK7M6WCrbhRg75_W8q2eme9cE9OIPmuuvP2R7uLSL5T6P841fQ_cD9Xzq_8N_J38A9IOSYA</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Carpenter, William B.</creator><creator>Yu, Qi</creator><creator>Hack, John H.</creator><creator>Dereka, Bogdan</creator><creator>Bowman, Joel M.</creator><creator>Tokmakoff, Andrei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6174-1035</orcidid><orcidid>https://orcid.org/0000-0003-2895-7915</orcidid><orcidid>https://orcid.org/0000-0002-2030-0671</orcidid><orcidid>https://orcid.org/0000-0001-9692-2672</orcidid><orcidid>https://orcid.org/0000-0003-0042-0921</orcidid><orcidid>https://orcid.org/0000-0002-2434-8744</orcidid><orcidid>https://orcid.org/0000000261741035</orcidid><orcidid>https://orcid.org/0000000300420921</orcidid><orcidid>https://orcid.org/0000000328957915</orcidid><orcidid>https://orcid.org/0000000224348744</orcidid><orcidid>https://orcid.org/0000000220300671</orcidid><orcidid>https://orcid.org/0000000196922672</orcidid></search><sort><creationdate>20200928</creationdate><title>Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations</title><author>Carpenter, William B. ; Yu, Qi ; Hack, John H. ; Dereka, Bogdan ; Bowman, Joel M. ; Tokmakoff, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-6a953d862bc468219e05504b6f82991f6791a5028b3e267f6cd470fac49f25893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anharmonicity</topic><topic>Asymmetry</topic><topic>Configuration interaction</topic><topic>Coupled modes</topic><topic>Heterogeneity</topic><topic>Hydrogen bonding</topic><topic>Infrared spectroscopy</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Protons</topic><topic>Room temperature</topic><topic>Self consistent fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpenter, William B.</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Hack, John H.</creatorcontrib><creatorcontrib>Dereka, Bogdan</creatorcontrib><creatorcontrib>Bowman, Joel M.</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpenter, William B.</au><au>Yu, Qi</au><au>Hack, John H.</au><au>Dereka, Bogdan</au><au>Bowman, Joel M.</au><au>Tokmakoff, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-09-28</date><risdate>2020</risdate><volume>153</volume><issue>12</issue><spage>124506</spage><epage>124506</epage><pages>124506-124506</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2+ and Eigen H9O4+ ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure–spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm−1 is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020279</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6174-1035</orcidid><orcidid>https://orcid.org/0000-0003-2895-7915</orcidid><orcidid>https://orcid.org/0000-0002-2030-0671</orcidid><orcidid>https://orcid.org/0000-0001-9692-2672</orcidid><orcidid>https://orcid.org/0000-0003-0042-0921</orcidid><orcidid>https://orcid.org/0000-0002-2434-8744</orcidid><orcidid>https://orcid.org/0000000261741035</orcidid><orcidid>https://orcid.org/0000000300420921</orcidid><orcidid>https://orcid.org/0000000328957915</orcidid><orcidid>https://orcid.org/0000000224348744</orcidid><orcidid>https://orcid.org/0000000220300671</orcidid><orcidid>https://orcid.org/0000000196922672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-09, Vol.153 (12), p.124506-124506
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1664558
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anharmonicity
Asymmetry
Configuration interaction
Coupled modes
Heterogeneity
Hydrogen bonding
Infrared spectroscopy
Mathematical analysis
Physics
Protons
Room temperature
Self consistent fields
title Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20the%202D%20IR%20spectrum%20of%20the%20aqueous%20proton%20with%20high-level%20VSCF/VCI%20calculations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Carpenter,%20William%20B.&rft.date=2020-09-28&rft.volume=153&rft.issue=12&rft.spage=124506&rft.epage=124506&rft.pages=124506-124506&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0020279&rft_dat=%3Cproquest_osti_%3E2448405272%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444999847&rft_id=info:pmid/&rfr_iscdi=true