High-Pressure Infiltration–Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores
Pressure-driven permeation of water in a poorly wettable material results in a conversion of mechanical work into surface free energy representing a new form of energy storage or absorption. When water is replaced by a concentrated electrolyte solution, the storage capacity of a nanoporous medium be...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2020-10, Vol.124 (42), p.23433-23445 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23445 |
---|---|
container_issue | 42 |
container_start_page | 23433 |
container_title | Journal of physical chemistry. C |
container_volume | 124 |
creator | Zamfir, Serban Moucka, Filip Bratko, Dusan |
description | Pressure-driven permeation of water in a poorly wettable material results in a conversion of mechanical work into surface free energy representing a new form of energy storage or absorption. When water is replaced by a concentrated electrolyte solution, the storage capacity of a nanoporous medium becomes comparable to high-end supercapacitors. The addition of salt can also reduce the hysteresis of the infiltration–expulsion cycle. Our molecular simulations provide a theoretical perspective into the mechanisms involved in the process and underlying structures and interactions in compressed nanoconfined solutions. Specifically, we consider aqueous NaCl in planar confinements of widths of 1.0 and 1.64 nm and pressures of up to 3 kbar. Open ensemble Monte Carlo simulations utilizing fractional exchanges of molecules for efficient addition–removal of ions have been utilized in conjunction with pressure-dependent chemical potentials to model bulk phases under pressure. Confinements open to these pressurized bulk, aqueous electrolyte phases show reversibility at narrow pore sizes and irreversibility in wider ones, consistent with experiment, as well as strong hysteresis at both pore size. The addition of salt results in significant increases in the solid–liquid interfacial tension in narrower pores and associated infiltration and expulsion pressures. These changes are consistent with strong desalination effects at the lower pore size observed irrespective of external pressure and initial concentration. |
doi_str_mv | 10.1021/acs.jpcc.0c07184 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1663270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c9160167</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-1b9ad1b2359595d99ffe1379a66c6ec1a850a1692d86e1e1903faa0c9c62b4303</originalsourceid><addsrcrecordid>eNp1kL1OwzAQxy0EEqWwM1rMpPjixKnHqiptpQo6AKvlOA51FexgJxLdeAfekCfBpRUbuuFO-n9I90PoGsgISAp3UoXRtlVqRBQpYJydoAFwmiZFluenf3dWnKOLELaE5JQAHaCXhXndJGuvQ-i9xktbm6bzsjPOfn9-zT7avgnxxq7Gk_deuz7gBzltsLF43UgrPV7sKu_ajSuNipJ1rYtll-islk3QV8c9RM_3s6fpIlk9zpfTySqRNONdAiWXFZQpzXmcivO61kALLhlTTCuQ45xIYDytxkyDBk5oLSVRXLG0zCihQ3Rz6HWhMyIo02m1Uc5arToBjNG02JvIwaS8C8HrWrTevEm_E0DEHp6I8MQenjjCi5HbQ-RXcb238Yv_7T-vk3RL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Pressure Infiltration–Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores</title><source>American Chemical Society Journals</source><creator>Zamfir, Serban ; Moucka, Filip ; Bratko, Dusan</creator><creatorcontrib>Zamfir, Serban ; Moucka, Filip ; Bratko, Dusan ; Virginia Commonwealth Univ., Richmond, VA (United States)</creatorcontrib><description>Pressure-driven permeation of water in a poorly wettable material results in a conversion of mechanical work into surface free energy representing a new form of energy storage or absorption. When water is replaced by a concentrated electrolyte solution, the storage capacity of a nanoporous medium becomes comparable to high-end supercapacitors. The addition of salt can also reduce the hysteresis of the infiltration–expulsion cycle. Our molecular simulations provide a theoretical perspective into the mechanisms involved in the process and underlying structures and interactions in compressed nanoconfined solutions. Specifically, we consider aqueous NaCl in planar confinements of widths of 1.0 and 1.64 nm and pressures of up to 3 kbar. Open ensemble Monte Carlo simulations utilizing fractional exchanges of molecules for efficient addition–removal of ions have been utilized in conjunction with pressure-dependent chemical potentials to model bulk phases under pressure. Confinements open to these pressurized bulk, aqueous electrolyte phases show reversibility at narrow pore sizes and irreversibility in wider ones, consistent with experiment, as well as strong hysteresis at both pore size. The addition of salt results in significant increases in the solid–liquid interfacial tension in narrower pores and associated infiltration and expulsion pressures. These changes are consistent with strong desalination effects at the lower pore size observed irrespective of external pressure and initial concentration.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c07184</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Physical Processes in Nanomaterials and Nanostructures ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; energy absorption ; ENERGY STORAGE ; NANOSCIENCE AND NANOTECHNOLOGY ; pore permeation ; Pressure</subject><ispartof>Journal of physical chemistry. C, 2020-10, Vol.124 (42), p.23433-23445</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-1b9ad1b2359595d99ffe1379a66c6ec1a850a1692d86e1e1903faa0c9c62b4303</citedby><cites>FETCH-LOGICAL-a349t-1b9ad1b2359595d99ffe1379a66c6ec1a850a1692d86e1e1903faa0c9c62b4303</cites><orcidid>0000-0002-3675-5275 ; 0000-0002-1400-7890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c07184$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c07184$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1663270$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zamfir, Serban</creatorcontrib><creatorcontrib>Moucka, Filip</creatorcontrib><creatorcontrib>Bratko, Dusan</creatorcontrib><creatorcontrib>Virginia Commonwealth Univ., Richmond, VA (United States)</creatorcontrib><title>High-Pressure Infiltration–Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Pressure-driven permeation of water in a poorly wettable material results in a conversion of mechanical work into surface free energy representing a new form of energy storage or absorption. When water is replaced by a concentrated electrolyte solution, the storage capacity of a nanoporous medium becomes comparable to high-end supercapacitors. The addition of salt can also reduce the hysteresis of the infiltration–expulsion cycle. Our molecular simulations provide a theoretical perspective into the mechanisms involved in the process and underlying structures and interactions in compressed nanoconfined solutions. Specifically, we consider aqueous NaCl in planar confinements of widths of 1.0 and 1.64 nm and pressures of up to 3 kbar. Open ensemble Monte Carlo simulations utilizing fractional exchanges of molecules for efficient addition–removal of ions have been utilized in conjunction with pressure-dependent chemical potentials to model bulk phases under pressure. Confinements open to these pressurized bulk, aqueous electrolyte phases show reversibility at narrow pore sizes and irreversibility in wider ones, consistent with experiment, as well as strong hysteresis at both pore size. The addition of salt results in significant increases in the solid–liquid interfacial tension in narrower pores and associated infiltration and expulsion pressures. These changes are consistent with strong desalination effects at the lower pore size observed irrespective of external pressure and initial concentration.</description><subject>C: Physical Processes in Nanomaterials and Nanostructures</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>energy absorption</subject><subject>ENERGY STORAGE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>pore permeation</subject><subject>Pressure</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAQxy0EEqWwM1rMpPjixKnHqiptpQo6AKvlOA51FexgJxLdeAfekCfBpRUbuuFO-n9I90PoGsgISAp3UoXRtlVqRBQpYJydoAFwmiZFluenf3dWnKOLELaE5JQAHaCXhXndJGuvQ-i9xktbm6bzsjPOfn9-zT7avgnxxq7Gk_deuz7gBzltsLF43UgrPV7sKu_ajSuNipJ1rYtll-islk3QV8c9RM_3s6fpIlk9zpfTySqRNONdAiWXFZQpzXmcivO61kALLhlTTCuQ45xIYDytxkyDBk5oLSVRXLG0zCihQ3Rz6HWhMyIo02m1Uc5arToBjNG02JvIwaS8C8HrWrTevEm_E0DEHp6I8MQenjjCi5HbQ-RXcb238Yv_7T-vk3RL</recordid><startdate>20201022</startdate><enddate>20201022</enddate><creator>Zamfir, Serban</creator><creator>Moucka, Filip</creator><creator>Bratko, Dusan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3675-5275</orcidid><orcidid>https://orcid.org/0000-0002-1400-7890</orcidid></search><sort><creationdate>20201022</creationdate><title>High-Pressure Infiltration–Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores</title><author>Zamfir, Serban ; Moucka, Filip ; Bratko, Dusan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-1b9ad1b2359595d99ffe1379a66c6ec1a850a1692d86e1e1903faa0c9c62b4303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>C: Physical Processes in Nanomaterials and Nanostructures</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>energy absorption</topic><topic>ENERGY STORAGE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>pore permeation</topic><topic>Pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamfir, Serban</creatorcontrib><creatorcontrib>Moucka, Filip</creatorcontrib><creatorcontrib>Bratko, Dusan</creatorcontrib><creatorcontrib>Virginia Commonwealth Univ., Richmond, VA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamfir, Serban</au><au>Moucka, Filip</au><au>Bratko, Dusan</au><aucorp>Virginia Commonwealth Univ., Richmond, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Pressure Infiltration–Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-10-22</date><risdate>2020</risdate><volume>124</volume><issue>42</issue><spage>23433</spage><epage>23445</epage><pages>23433-23445</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Pressure-driven permeation of water in a poorly wettable material results in a conversion of mechanical work into surface free energy representing a new form of energy storage or absorption. When water is replaced by a concentrated electrolyte solution, the storage capacity of a nanoporous medium becomes comparable to high-end supercapacitors. The addition of salt can also reduce the hysteresis of the infiltration–expulsion cycle. Our molecular simulations provide a theoretical perspective into the mechanisms involved in the process and underlying structures and interactions in compressed nanoconfined solutions. Specifically, we consider aqueous NaCl in planar confinements of widths of 1.0 and 1.64 nm and pressures of up to 3 kbar. Open ensemble Monte Carlo simulations utilizing fractional exchanges of molecules for efficient addition–removal of ions have been utilized in conjunction with pressure-dependent chemical potentials to model bulk phases under pressure. Confinements open to these pressurized bulk, aqueous electrolyte phases show reversibility at narrow pore sizes and irreversibility in wider ones, consistent with experiment, as well as strong hysteresis at both pore size. The addition of salt results in significant increases in the solid–liquid interfacial tension in narrower pores and associated infiltration and expulsion pressures. These changes are consistent with strong desalination effects at the lower pore size observed irrespective of external pressure and initial concentration.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c07184</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3675-5275</orcidid><orcidid>https://orcid.org/0000-0002-1400-7890</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2020-10, Vol.124 (42), p.23433-23445 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1663270 |
source | American Chemical Society Journals |
subjects | C: Physical Processes in Nanomaterials and Nanostructures CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY energy absorption ENERGY STORAGE NANOSCIENCE AND NANOTECHNOLOGY pore permeation Pressure |
title | High-Pressure Infiltration–Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Pressure%20Infiltration%E2%80%93Expulsion%20of%20Aqueous%20NaCl%20in%20Planar%20Hydrophobic%20Nanopores&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Zamfir,%20Serban&rft.aucorp=Virginia%20Commonwealth%20Univ.,%20Richmond,%20VA%20(United%20States)&rft.date=2020-10-22&rft.volume=124&rft.issue=42&rft.spage=23433&rft.epage=23445&rft.pages=23433-23445&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c07184&rft_dat=%3Cacs_osti_%3Ec9160167%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |