The lattice parameter – composition relationship of the body centered cubic uranium-niobium alloys
In-situ time-of-flight neutron diffraction experiments were performed on uranium-niobium alloy with 6 wt% Nb to study the lattice parameter-composition relationship for the body centered cubic (bcc) alloys. Based on lattice-parameter measurements of Nb-supersaturated γs phase over the range of 450 –...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2020-12, Vol.542, p.152493, Article 152493 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 152493 |
container_title | Journal of nuclear materials |
container_volume | 542 |
creator | Zhang, Jianzhong Hackenberg, Robert E. Watkins, Erik B. Vogel, Sven C. Brown, Donald W. |
description | In-situ time-of-flight neutron diffraction experiments were performed on uranium-niobium alloy with 6 wt% Nb to study the lattice parameter-composition relationship for the body centered cubic (bcc) alloys. Based on lattice-parameter measurements of Nb-supersaturated γs phase over the range of 450 – 790 °C, an improved Vegard's-type relationship was established for determination of Nb concentrations at elevated temperatures. Neutron diffraction data were also collected as a function of aging time over the 450 - 600 °C range when γs phase decomposed isothermally into the mixture of orthorhombic α-U and Nb-rich bcc phase, as well as at room-temperature on the alloys aged ex-situ at 500 °C up to five years. From these measurements, the average Nb concentrations in the bcc phase were determined based on the Rietveld refinements of weight fraction and mass conservation relations (lever rule). Over the 15at% – 78at% range of Nb concentrations that correspond to different experimental aging times, the lattice parameters at constant temperatures exhibit a nonlinear S-shaped variation with Nb concentration, and the associated excess volumes of mixing can be described by a subregular solution model of the Redlich–Kister type of polynomial. Over the full range of composition the S-shaped deviation from Vegard's law can be modeled using a combination of an elastic continuum model and a perturbation to the radii of the solute atoms in the solvent, suggesting that electronic interactions between solute and solvent atoms could play an important role in the compositional dependence of lattice parameter for the γ-phase U-Nb alloys. While Vegard's law is a straightforward and reasonably good approximation for the bcc solid solutions in the U-Nb system, the Nb concentrations determined from the weight fraction refinements of diffraction data provide internally consistent, mass-conserving estimates of solute redistribution for the monotectoid reaction. |
doi_str_mv | 10.1016/j.jnucmat.2020.152493 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1663192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311520311016</els_id><sourcerecordid>2469213155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-cdd9c57aa327cb4059ab8938e6c295f55df367589e8764abef39116700ea040c3</originalsourceid><addsrcrecordid>eNqFkM1q3TAQhUVoobdpH6EgmrVv9GPZ1qqEkLSFQDbpWsjjMVfmWnIkuXB3fYe8YZ4kujj7rmYYvnM4cwj5xtmeM95cT_vJrzDbvBdMlJsStZYXZMe7VlZ1J9gHsmNMiEpyrj6RzylNjDGlmdqR4emA9GhzdoB0sdHOmDHS138vFMK8hOSyC55GLExZ0sEtNIw0F1UfhhMF9IXHgcLaO6BrtN6tc-Vd6Muk9ngMp_SFfBztMeHX93lJ_tzfPd3-qh4ef_6-vXmooOY8VzAMGlRrrRQt9HVJaPtOyw4bEFqNSg2jbFrVaezaprY9jlJz3rSMoWU1A3lJvm--IWVnEriMcIDgPUI2vGkk16JAVxu0xPC8YspmCmv0JZcRdaMFl1ypQqmNghhSijiaJbrZxpPhzJxbN5N5b92cWzdb60X3Y9Nh-fOvw3iOgR5wcPGcYgjuPw5vyP6PGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2469213155</pqid></control><display><type>article</type><title>The lattice parameter – composition relationship of the body centered cubic uranium-niobium alloys</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Jianzhong ; Hackenberg, Robert E. ; Watkins, Erik B. ; Vogel, Sven C. ; Brown, Donald W.</creator><creatorcontrib>Zhang, Jianzhong ; Hackenberg, Robert E. ; Watkins, Erik B. ; Vogel, Sven C. ; Brown, Donald W. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>In-situ time-of-flight neutron diffraction experiments were performed on uranium-niobium alloy with 6 wt% Nb to study the lattice parameter-composition relationship for the body centered cubic (bcc) alloys. Based on lattice-parameter measurements of Nb-supersaturated γs phase over the range of 450 – 790 °C, an improved Vegard's-type relationship was established for determination of Nb concentrations at elevated temperatures. Neutron diffraction data were also collected as a function of aging time over the 450 - 600 °C range when γs phase decomposed isothermally into the mixture of orthorhombic α-U and Nb-rich bcc phase, as well as at room-temperature on the alloys aged ex-situ at 500 °C up to five years. From these measurements, the average Nb concentrations in the bcc phase were determined based on the Rietveld refinements of weight fraction and mass conservation relations (lever rule). Over the 15at% – 78at% range of Nb concentrations that correspond to different experimental aging times, the lattice parameters at constant temperatures exhibit a nonlinear S-shaped variation with Nb concentration, and the associated excess volumes of mixing can be described by a subregular solution model of the Redlich–Kister type of polynomial. Over the full range of composition the S-shaped deviation from Vegard's law can be modeled using a combination of an elastic continuum model and a perturbation to the radii of the solute atoms in the solvent, suggesting that electronic interactions between solute and solvent atoms could play an important role in the compositional dependence of lattice parameter for the γ-phase U-Nb alloys. While Vegard's law is a straightforward and reasonably good approximation for the bcc solid solutions in the U-Nb system, the Nb concentrations determined from the weight fraction refinements of diffraction data provide internally consistent, mass-conserving estimates of solute redistribution for the monotectoid reaction.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2020.152493</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aging ; Alloys ; Body centered cubic lattice ; Composition ; Continuum elasticity models ; Continuum modeling ; Gamma phase ; High temperature ; lattice parameter-composition relationship ; Lattice parameters ; MATERIALS SCIENCE ; Mathematical models ; Neutron diffraction ; Neutrons ; Niobium ; Perturbation ; Polynomials ; Room temperature ; Solid solutions ; Solvents ; Temperature ; Thermodynamics of mixing ; U-Nb alloys ; Uranium ; Uranium base alloys ; Vegard's law ; Weight</subject><ispartof>Journal of nuclear materials, 2020-12, Vol.542, p.152493, Article 152493</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Dec 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-cdd9c57aa327cb4059ab8938e6c295f55df367589e8764abef39116700ea040c3</citedby><cites>FETCH-LOGICAL-c411t-cdd9c57aa327cb4059ab8938e6c295f55df367589e8764abef39116700ea040c3</cites><orcidid>0000-0001-5508-1782 ; 0000000203805723 ; 0000000185739629 ; 0000000320490361 ; 0000000155081782 ; 0000000345658212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2020.152493$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1663192$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jianzhong</creatorcontrib><creatorcontrib>Hackenberg, Robert E.</creatorcontrib><creatorcontrib>Watkins, Erik B.</creatorcontrib><creatorcontrib>Vogel, Sven C.</creatorcontrib><creatorcontrib>Brown, Donald W.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>The lattice parameter – composition relationship of the body centered cubic uranium-niobium alloys</title><title>Journal of nuclear materials</title><description>In-situ time-of-flight neutron diffraction experiments were performed on uranium-niobium alloy with 6 wt% Nb to study the lattice parameter-composition relationship for the body centered cubic (bcc) alloys. Based on lattice-parameter measurements of Nb-supersaturated γs phase over the range of 450 – 790 °C, an improved Vegard's-type relationship was established for determination of Nb concentrations at elevated temperatures. Neutron diffraction data were also collected as a function of aging time over the 450 - 600 °C range when γs phase decomposed isothermally into the mixture of orthorhombic α-U and Nb-rich bcc phase, as well as at room-temperature on the alloys aged ex-situ at 500 °C up to five years. From these measurements, the average Nb concentrations in the bcc phase were determined based on the Rietveld refinements of weight fraction and mass conservation relations (lever rule). Over the 15at% – 78at% range of Nb concentrations that correspond to different experimental aging times, the lattice parameters at constant temperatures exhibit a nonlinear S-shaped variation with Nb concentration, and the associated excess volumes of mixing can be described by a subregular solution model of the Redlich–Kister type of polynomial. Over the full range of composition the S-shaped deviation from Vegard's law can be modeled using a combination of an elastic continuum model and a perturbation to the radii of the solute atoms in the solvent, suggesting that electronic interactions between solute and solvent atoms could play an important role in the compositional dependence of lattice parameter for the γ-phase U-Nb alloys. While Vegard's law is a straightforward and reasonably good approximation for the bcc solid solutions in the U-Nb system, the Nb concentrations determined from the weight fraction refinements of diffraction data provide internally consistent, mass-conserving estimates of solute redistribution for the monotectoid reaction.</description><subject>Aging</subject><subject>Alloys</subject><subject>Body centered cubic lattice</subject><subject>Composition</subject><subject>Continuum elasticity models</subject><subject>Continuum modeling</subject><subject>Gamma phase</subject><subject>High temperature</subject><subject>lattice parameter-composition relationship</subject><subject>Lattice parameters</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>Neutron diffraction</subject><subject>Neutrons</subject><subject>Niobium</subject><subject>Perturbation</subject><subject>Polynomials</subject><subject>Room temperature</subject><subject>Solid solutions</subject><subject>Solvents</subject><subject>Temperature</subject><subject>Thermodynamics of mixing</subject><subject>U-Nb alloys</subject><subject>Uranium</subject><subject>Uranium base alloys</subject><subject>Vegard's law</subject><subject>Weight</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3TAQhUVoobdpH6EgmrVv9GPZ1qqEkLSFQDbpWsjjMVfmWnIkuXB3fYe8YZ4kujj7rmYYvnM4cwj5xtmeM95cT_vJrzDbvBdMlJsStZYXZMe7VlZ1J9gHsmNMiEpyrj6RzylNjDGlmdqR4emA9GhzdoB0sdHOmDHS138vFMK8hOSyC55GLExZ0sEtNIw0F1UfhhMF9IXHgcLaO6BrtN6tc-Vd6Muk9ngMp_SFfBztMeHX93lJ_tzfPd3-qh4ef_6-vXmooOY8VzAMGlRrrRQt9HVJaPtOyw4bEFqNSg2jbFrVaezaprY9jlJz3rSMoWU1A3lJvm--IWVnEriMcIDgPUI2vGkk16JAVxu0xPC8YspmCmv0JZcRdaMFl1ypQqmNghhSijiaJbrZxpPhzJxbN5N5b92cWzdb60X3Y9Nh-fOvw3iOgR5wcPGcYgjuPw5vyP6PGQ</recordid><startdate>20201215</startdate><enddate>20201215</enddate><creator>Zhang, Jianzhong</creator><creator>Hackenberg, Robert E.</creator><creator>Watkins, Erik B.</creator><creator>Vogel, Sven C.</creator><creator>Brown, Donald W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5508-1782</orcidid><orcidid>https://orcid.org/0000000203805723</orcidid><orcidid>https://orcid.org/0000000185739629</orcidid><orcidid>https://orcid.org/0000000320490361</orcidid><orcidid>https://orcid.org/0000000155081782</orcidid><orcidid>https://orcid.org/0000000345658212</orcidid></search><sort><creationdate>20201215</creationdate><title>The lattice parameter – composition relationship of the body centered cubic uranium-niobium alloys</title><author>Zhang, Jianzhong ; Hackenberg, Robert E. ; Watkins, Erik B. ; Vogel, Sven C. ; Brown, Donald W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-cdd9c57aa327cb4059ab8938e6c295f55df367589e8764abef39116700ea040c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Alloys</topic><topic>Body centered cubic lattice</topic><topic>Composition</topic><topic>Continuum elasticity models</topic><topic>Continuum modeling</topic><topic>Gamma phase</topic><topic>High temperature</topic><topic>lattice parameter-composition relationship</topic><topic>Lattice parameters</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>Neutron diffraction</topic><topic>Neutrons</topic><topic>Niobium</topic><topic>Perturbation</topic><topic>Polynomials</topic><topic>Room temperature</topic><topic>Solid solutions</topic><topic>Solvents</topic><topic>Temperature</topic><topic>Thermodynamics of mixing</topic><topic>U-Nb alloys</topic><topic>Uranium</topic><topic>Uranium base alloys</topic><topic>Vegard's law</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jianzhong</creatorcontrib><creatorcontrib>Hackenberg, Robert E.</creatorcontrib><creatorcontrib>Watkins, Erik B.</creatorcontrib><creatorcontrib>Vogel, Sven C.</creatorcontrib><creatorcontrib>Brown, Donald W.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jianzhong</au><au>Hackenberg, Robert E.</au><au>Watkins, Erik B.</au><au>Vogel, Sven C.</au><au>Brown, Donald W.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The lattice parameter – composition relationship of the body centered cubic uranium-niobium alloys</atitle><jtitle>Journal of nuclear materials</jtitle><date>2020-12-15</date><risdate>2020</risdate><volume>542</volume><spage>152493</spage><pages>152493-</pages><artnum>152493</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>In-situ time-of-flight neutron diffraction experiments were performed on uranium-niobium alloy with 6 wt% Nb to study the lattice parameter-composition relationship for the body centered cubic (bcc) alloys. Based on lattice-parameter measurements of Nb-supersaturated γs phase over the range of 450 – 790 °C, an improved Vegard's-type relationship was established for determination of Nb concentrations at elevated temperatures. Neutron diffraction data were also collected as a function of aging time over the 450 - 600 °C range when γs phase decomposed isothermally into the mixture of orthorhombic α-U and Nb-rich bcc phase, as well as at room-temperature on the alloys aged ex-situ at 500 °C up to five years. From these measurements, the average Nb concentrations in the bcc phase were determined based on the Rietveld refinements of weight fraction and mass conservation relations (lever rule). Over the 15at% – 78at% range of Nb concentrations that correspond to different experimental aging times, the lattice parameters at constant temperatures exhibit a nonlinear S-shaped variation with Nb concentration, and the associated excess volumes of mixing can be described by a subregular solution model of the Redlich–Kister type of polynomial. Over the full range of composition the S-shaped deviation from Vegard's law can be modeled using a combination of an elastic continuum model and a perturbation to the radii of the solute atoms in the solvent, suggesting that electronic interactions between solute and solvent atoms could play an important role in the compositional dependence of lattice parameter for the γ-phase U-Nb alloys. While Vegard's law is a straightforward and reasonably good approximation for the bcc solid solutions in the U-Nb system, the Nb concentrations determined from the weight fraction refinements of diffraction data provide internally consistent, mass-conserving estimates of solute redistribution for the monotectoid reaction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2020.152493</doi><orcidid>https://orcid.org/0000-0001-5508-1782</orcidid><orcidid>https://orcid.org/0000000203805723</orcidid><orcidid>https://orcid.org/0000000185739629</orcidid><orcidid>https://orcid.org/0000000320490361</orcidid><orcidid>https://orcid.org/0000000155081782</orcidid><orcidid>https://orcid.org/0000000345658212</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2020-12, Vol.542, p.152493, Article 152493 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_osti_scitechconnect_1663192 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aging Alloys Body centered cubic lattice Composition Continuum elasticity models Continuum modeling Gamma phase High temperature lattice parameter-composition relationship Lattice parameters MATERIALS SCIENCE Mathematical models Neutron diffraction Neutrons Niobium Perturbation Polynomials Room temperature Solid solutions Solvents Temperature Thermodynamics of mixing U-Nb alloys Uranium Uranium base alloys Vegard's law Weight |
title | The lattice parameter – composition relationship of the body centered cubic uranium-niobium alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20lattice%20parameter%20%E2%80%93%20composition%20relationship%20of%20the%20body%20centered%20cubic%20uranium-niobium%20alloys&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Zhang,%20Jianzhong&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2020-12-15&rft.volume=542&rft.spage=152493&rft.pages=152493-&rft.artnum=152493&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2020.152493&rft_dat=%3Cproquest_osti_%3E2469213155%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2469213155&rft_id=info:pmid/&rft_els_id=S0022311520311016&rfr_iscdi=true |