Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells

Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous sola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-06, Vol.12 (23), p.25895-25902
Hauptverfasser: Muzzillo, Christopher P, Reese, Matthew O, Mansfield, Lorelle M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25902
container_issue 23
container_start_page 25895
container_title ACS applied materials & interfaces
container_volume 12
creator Muzzillo, Christopher P
Reese, Matthew O
Mansfield, Lorelle M
description Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous solar cell demonstrations have had relatively low performance. This work introduces macroscopic nonuniformities in the grids to improve the short-circuit current density/fill factor tradeoff in small area Cu(In,Ga)Se cells. The performance of optimized baseline grids is matched by CFL grids with microscopic openings and macroscopic patterns, culminating in a 19.3% efficient cell. Simulations show that uniform CFL grids are enhanced by patterning because it leads to better balance among shadowing, grid resistance, and transparent conductive oxide resistance losses. Thin-film module efficiency calculations are performed to highlight the performance gains that metal grids can enable by eliminating the transparent conductive oxide losses and widening monoliths. Adding the patterned CFL grids demonstrated in this work to CIGS modules is predicted to reach 0.7% higher efficiency (absolute) than screen-printed grids.
doi_str_mv 10.1021/acsami.0c04958
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1659886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402425649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-360125b2874ad654faf1ffa357482c28d39a98cecd2f447343026406631e55ca3</originalsourceid><addsrcrecordid>eNo9kUtLAzEUhYMo1tfWpQRBcNOad2eWUloVWgUf65DeSWx0ZlKTzKL_3imtru6B-53L5RyELikZUcLonYFkGj8iQEQpiwN0QkshhgWT7PBfCzFApyl9EaI4I_IYDTjjZa_pCUoLAzEkCGsP-Dm0XetdiI3P3ibsW7yw2dT4Ifoq4Vm_sBVebvAkGvju5czXDZ77vAqf0axXG_xqU1fnrZGWI36Dp8558LbN-C3UJuKJret0jo6cqZO92M8z9DGbvk8eh_OXh6fJ_XwIXLE85IpQJpesGAtTKSmccdQ5w-VYFAxYUfHSlAVYqJgTYswFJ0wJohSnVkow_Axd7-6GlL1O4LOFFYS2tZA1VbIsCtVDtztoHcNPZ1PWjU_Qv2laG7qkmSBMMKlE2aOjHbpNLEXr9Dr6xsSNpkRv29C7NvS-jd5wtb_dLfvk_vG_-Pkv582FOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402425649</pqid></control><display><type>article</type><title>Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells</title><source>ACS Publications</source><creator>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M</creator><creatorcontrib>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous solar cell demonstrations have had relatively low performance. This work introduces macroscopic nonuniformities in the grids to improve the short-circuit current density/fill factor tradeoff in small area Cu(In,Ga)Se cells. The performance of optimized baseline grids is matched by CFL grids with microscopic openings and macroscopic patterns, culminating in a 19.3% efficient cell. Simulations show that uniform CFL grids are enhanced by patterning because it leads to better balance among shadowing, grid resistance, and transparent conductive oxide resistance losses. Thin-film module efficiency calculations are performed to highlight the performance gains that metal grids can enable by eliminating the transparent conductive oxide losses and widening monoliths. Adding the patterned CFL grids demonstrated in this work to CIGS modules is predicted to reach 0.7% higher efficiency (absolute) than screen-printed grids.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c04958</identifier><identifier>PMID: 32396321</identifier><language>eng</language><publisher>United States: American Chemical Society (ACS)</publisher><subject>lithography ; metal grid ; photovoltaics ; solar cell ; SOLAR ENERGY ; transparent conductive</subject><ispartof>ACS applied materials &amp; interfaces, 2020-06, Vol.12 (23), p.25895-25902</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-360125b2874ad654faf1ffa357482c28d39a98cecd2f447343026406631e55ca3</citedby><cites>FETCH-LOGICAL-c362t-360125b2874ad654faf1ffa357482c28d39a98cecd2f447343026406631e55ca3</cites><orcidid>0000-0001-9927-5984 ; 0000-0002-6492-0098 ; 0000000264920098 ; 0000000199275984 ; 0000000272064105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32396321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1659886$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Muzzillo, Christopher P</creatorcontrib><creatorcontrib>Reese, Matthew O</creatorcontrib><creatorcontrib>Mansfield, Lorelle M</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous solar cell demonstrations have had relatively low performance. This work introduces macroscopic nonuniformities in the grids to improve the short-circuit current density/fill factor tradeoff in small area Cu(In,Ga)Se cells. The performance of optimized baseline grids is matched by CFL grids with microscopic openings and macroscopic patterns, culminating in a 19.3% efficient cell. Simulations show that uniform CFL grids are enhanced by patterning because it leads to better balance among shadowing, grid resistance, and transparent conductive oxide resistance losses. Thin-film module efficiency calculations are performed to highlight the performance gains that metal grids can enable by eliminating the transparent conductive oxide losses and widening monoliths. Adding the patterned CFL grids demonstrated in this work to CIGS modules is predicted to reach 0.7% higher efficiency (absolute) than screen-printed grids.</description><subject>lithography</subject><subject>metal grid</subject><subject>photovoltaics</subject><subject>solar cell</subject><subject>SOLAR ENERGY</subject><subject>transparent conductive</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kUtLAzEUhYMo1tfWpQRBcNOad2eWUloVWgUf65DeSWx0ZlKTzKL_3imtru6B-53L5RyELikZUcLonYFkGj8iQEQpiwN0QkshhgWT7PBfCzFApyl9EaI4I_IYDTjjZa_pCUoLAzEkCGsP-Dm0XetdiI3P3ibsW7yw2dT4Ifoq4Vm_sBVebvAkGvju5czXDZ77vAqf0axXG_xqU1fnrZGWI36Dp8558LbN-C3UJuKJret0jo6cqZO92M8z9DGbvk8eh_OXh6fJ_XwIXLE85IpQJpesGAtTKSmccdQ5w-VYFAxYUfHSlAVYqJgTYswFJ0wJohSnVkow_Axd7-6GlL1O4LOFFYS2tZA1VbIsCtVDtztoHcNPZ1PWjU_Qv2laG7qkmSBMMKlE2aOjHbpNLEXr9Dr6xsSNpkRv29C7NvS-jd5wtb_dLfvk_vG_-Pkv582FOw</recordid><startdate>20200610</startdate><enddate>20200610</enddate><creator>Muzzillo, Christopher P</creator><creator>Reese, Matthew O</creator><creator>Mansfield, Lorelle M</creator><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9927-5984</orcidid><orcidid>https://orcid.org/0000-0002-6492-0098</orcidid><orcidid>https://orcid.org/0000000264920098</orcidid><orcidid>https://orcid.org/0000000199275984</orcidid><orcidid>https://orcid.org/0000000272064105</orcidid></search><sort><creationdate>20200610</creationdate><title>Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells</title><author>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-360125b2874ad654faf1ffa357482c28d39a98cecd2f447343026406631e55ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>lithography</topic><topic>metal grid</topic><topic>photovoltaics</topic><topic>solar cell</topic><topic>SOLAR ENERGY</topic><topic>transparent conductive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muzzillo, Christopher P</creatorcontrib><creatorcontrib>Reese, Matthew O</creatorcontrib><creatorcontrib>Mansfield, Lorelle M</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muzzillo, Christopher P</au><au>Reese, Matthew O</au><au>Mansfield, Lorelle M</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2020-06-10</date><risdate>2020</risdate><volume>12</volume><issue>23</issue><spage>25895</spage><epage>25902</epage><pages>25895-25902</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous solar cell demonstrations have had relatively low performance. This work introduces macroscopic nonuniformities in the grids to improve the short-circuit current density/fill factor tradeoff in small area Cu(In,Ga)Se cells. The performance of optimized baseline grids is matched by CFL grids with microscopic openings and macroscopic patterns, culminating in a 19.3% efficient cell. Simulations show that uniform CFL grids are enhanced by patterning because it leads to better balance among shadowing, grid resistance, and transparent conductive oxide resistance losses. Thin-film module efficiency calculations are performed to highlight the performance gains that metal grids can enable by eliminating the transparent conductive oxide losses and widening monoliths. Adding the patterned CFL grids demonstrated in this work to CIGS modules is predicted to reach 0.7% higher efficiency (absolute) than screen-printed grids.</abstract><cop>United States</cop><pub>American Chemical Society (ACS)</pub><pmid>32396321</pmid><doi>10.1021/acsami.0c04958</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9927-5984</orcidid><orcidid>https://orcid.org/0000-0002-6492-0098</orcidid><orcidid>https://orcid.org/0000000264920098</orcidid><orcidid>https://orcid.org/0000000199275984</orcidid><orcidid>https://orcid.org/0000000272064105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-06, Vol.12 (23), p.25895-25902
issn 1944-8244
1944-8252
language eng
recordid cdi_osti_scitechconnect_1659886
source ACS Publications
subjects lithography
metal grid
photovoltaics
solar cell
SOLAR ENERGY
transparent conductive
title Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroscopic%20Nonuniformities%20in%20Metal%20Grids%20Formed%20by%20Cracked%20Film%20Lithography%20Result%20in%2019.3%25%20Efficient%20Solar%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Muzzillo,%20Christopher%20P&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-06-10&rft.volume=12&rft.issue=23&rft.spage=25895&rft.epage=25902&rft.pages=25895-25902&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c04958&rft_dat=%3Cproquest_osti_%3E2402425649%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2402425649&rft_id=info:pmid/32396321&rfr_iscdi=true