Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells
Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous sola...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-06, Vol.12 (23), p.25895-25902 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25902 |
---|---|
container_issue | 23 |
container_start_page | 25895 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Muzzillo, Christopher P Reese, Matthew O Mansfield, Lorelle M |
description | Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous solar cell demonstrations have had relatively low performance. This work introduces macroscopic nonuniformities in the grids to improve the short-circuit current density/fill factor tradeoff in small area Cu(In,Ga)Se
cells. The performance of optimized baseline grids is matched by CFL grids with microscopic openings and macroscopic patterns, culminating in a 19.3% efficient cell. Simulations show that uniform CFL grids are enhanced by patterning because it leads to better balance among shadowing, grid resistance, and transparent conductive oxide resistance losses. Thin-film module efficiency calculations are performed to highlight the performance gains that metal grids can enable by eliminating the transparent conductive oxide losses and widening monoliths. Adding the patterned CFL grids demonstrated in this work to CIGS modules is predicted to reach 0.7% higher efficiency (absolute) than screen-printed grids. |
doi_str_mv | 10.1021/acsami.0c04958 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1659886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2402425649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-360125b2874ad654faf1ffa357482c28d39a98cecd2f447343026406631e55ca3</originalsourceid><addsrcrecordid>eNo9kUtLAzEUhYMo1tfWpQRBcNOad2eWUloVWgUf65DeSWx0ZlKTzKL_3imtru6B-53L5RyELikZUcLonYFkGj8iQEQpiwN0QkshhgWT7PBfCzFApyl9EaI4I_IYDTjjZa_pCUoLAzEkCGsP-Dm0XetdiI3P3ibsW7yw2dT4Ifoq4Vm_sBVebvAkGvju5czXDZ77vAqf0axXG_xqU1fnrZGWI36Dp8558LbN-C3UJuKJret0jo6cqZO92M8z9DGbvk8eh_OXh6fJ_XwIXLE85IpQJpesGAtTKSmccdQ5w-VYFAxYUfHSlAVYqJgTYswFJ0wJohSnVkow_Axd7-6GlL1O4LOFFYS2tZA1VbIsCtVDtztoHcNPZ1PWjU_Qv2laG7qkmSBMMKlE2aOjHbpNLEXr9Dr6xsSNpkRv29C7NvS-jd5wtb_dLfvk_vG_-Pkv582FOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2402425649</pqid></control><display><type>article</type><title>Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells</title><source>ACS Publications</source><creator>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M</creator><creatorcontrib>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous solar cell demonstrations have had relatively low performance. This work introduces macroscopic nonuniformities in the grids to improve the short-circuit current density/fill factor tradeoff in small area Cu(In,Ga)Se
cells. The performance of optimized baseline grids is matched by CFL grids with microscopic openings and macroscopic patterns, culminating in a 19.3% efficient cell. Simulations show that uniform CFL grids are enhanced by patterning because it leads to better balance among shadowing, grid resistance, and transparent conductive oxide resistance losses. Thin-film module efficiency calculations are performed to highlight the performance gains that metal grids can enable by eliminating the transparent conductive oxide losses and widening monoliths. Adding the patterned CFL grids demonstrated in this work to CIGS modules is predicted to reach 0.7% higher efficiency (absolute) than screen-printed grids.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c04958</identifier><identifier>PMID: 32396321</identifier><language>eng</language><publisher>United States: American Chemical Society (ACS)</publisher><subject>lithography ; metal grid ; photovoltaics ; solar cell ; SOLAR ENERGY ; transparent conductive</subject><ispartof>ACS applied materials & interfaces, 2020-06, Vol.12 (23), p.25895-25902</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-360125b2874ad654faf1ffa357482c28d39a98cecd2f447343026406631e55ca3</citedby><cites>FETCH-LOGICAL-c362t-360125b2874ad654faf1ffa357482c28d39a98cecd2f447343026406631e55ca3</cites><orcidid>0000-0001-9927-5984 ; 0000-0002-6492-0098 ; 0000000264920098 ; 0000000199275984 ; 0000000272064105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32396321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1659886$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Muzzillo, Christopher P</creatorcontrib><creatorcontrib>Reese, Matthew O</creatorcontrib><creatorcontrib>Mansfield, Lorelle M</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous solar cell demonstrations have had relatively low performance. This work introduces macroscopic nonuniformities in the grids to improve the short-circuit current density/fill factor tradeoff in small area Cu(In,Ga)Se
cells. The performance of optimized baseline grids is matched by CFL grids with microscopic openings and macroscopic patterns, culminating in a 19.3% efficient cell. Simulations show that uniform CFL grids are enhanced by patterning because it leads to better balance among shadowing, grid resistance, and transparent conductive oxide resistance losses. Thin-film module efficiency calculations are performed to highlight the performance gains that metal grids can enable by eliminating the transparent conductive oxide losses and widening monoliths. Adding the patterned CFL grids demonstrated in this work to CIGS modules is predicted to reach 0.7% higher efficiency (absolute) than screen-printed grids.</description><subject>lithography</subject><subject>metal grid</subject><subject>photovoltaics</subject><subject>solar cell</subject><subject>SOLAR ENERGY</subject><subject>transparent conductive</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kUtLAzEUhYMo1tfWpQRBcNOad2eWUloVWgUf65DeSWx0ZlKTzKL_3imtru6B-53L5RyELikZUcLonYFkGj8iQEQpiwN0QkshhgWT7PBfCzFApyl9EaI4I_IYDTjjZa_pCUoLAzEkCGsP-Dm0XetdiI3P3ibsW7yw2dT4Ifoq4Vm_sBVebvAkGvju5czXDZ77vAqf0axXG_xqU1fnrZGWI36Dp8558LbN-C3UJuKJret0jo6cqZO92M8z9DGbvk8eh_OXh6fJ_XwIXLE85IpQJpesGAtTKSmccdQ5w-VYFAxYUfHSlAVYqJgTYswFJ0wJohSnVkow_Axd7-6GlL1O4LOFFYS2tZA1VbIsCtVDtztoHcNPZ1PWjU_Qv2laG7qkmSBMMKlE2aOjHbpNLEXr9Dr6xsSNpkRv29C7NvS-jd5wtb_dLfvk_vG_-Pkv582FOw</recordid><startdate>20200610</startdate><enddate>20200610</enddate><creator>Muzzillo, Christopher P</creator><creator>Reese, Matthew O</creator><creator>Mansfield, Lorelle M</creator><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9927-5984</orcidid><orcidid>https://orcid.org/0000-0002-6492-0098</orcidid><orcidid>https://orcid.org/0000000264920098</orcidid><orcidid>https://orcid.org/0000000199275984</orcidid><orcidid>https://orcid.org/0000000272064105</orcidid></search><sort><creationdate>20200610</creationdate><title>Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells</title><author>Muzzillo, Christopher P ; Reese, Matthew O ; Mansfield, Lorelle M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-360125b2874ad654faf1ffa357482c28d39a98cecd2f447343026406631e55ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>lithography</topic><topic>metal grid</topic><topic>photovoltaics</topic><topic>solar cell</topic><topic>SOLAR ENERGY</topic><topic>transparent conductive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muzzillo, Christopher P</creatorcontrib><creatorcontrib>Reese, Matthew O</creatorcontrib><creatorcontrib>Mansfield, Lorelle M</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muzzillo, Christopher P</au><au>Reese, Matthew O</au><au>Mansfield, Lorelle M</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2020-06-10</date><risdate>2020</risdate><volume>12</volume><issue>23</issue><spage>25895</spage><epage>25902</epage><pages>25895-25902</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Cracked film lithography (CFL) is an emerging method for patterning transparent conductive metal grids. CFL can be vacuum- and Ag-free, and it forms more durable grids than nanowire approaches. In spite of CFL's promising transmittance/grid sheet resistance/wire spacing tradeoffs, previous solar cell demonstrations have had relatively low performance. This work introduces macroscopic nonuniformities in the grids to improve the short-circuit current density/fill factor tradeoff in small area Cu(In,Ga)Se
cells. The performance of optimized baseline grids is matched by CFL grids with microscopic openings and macroscopic patterns, culminating in a 19.3% efficient cell. Simulations show that uniform CFL grids are enhanced by patterning because it leads to better balance among shadowing, grid resistance, and transparent conductive oxide resistance losses. Thin-film module efficiency calculations are performed to highlight the performance gains that metal grids can enable by eliminating the transparent conductive oxide losses and widening monoliths. Adding the patterned CFL grids demonstrated in this work to CIGS modules is predicted to reach 0.7% higher efficiency (absolute) than screen-printed grids.</abstract><cop>United States</cop><pub>American Chemical Society (ACS)</pub><pmid>32396321</pmid><doi>10.1021/acsami.0c04958</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9927-5984</orcidid><orcidid>https://orcid.org/0000-0002-6492-0098</orcidid><orcidid>https://orcid.org/0000000264920098</orcidid><orcidid>https://orcid.org/0000000199275984</orcidid><orcidid>https://orcid.org/0000000272064105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-06, Vol.12 (23), p.25895-25902 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_osti_scitechconnect_1659886 |
source | ACS Publications |
subjects | lithography metal grid photovoltaics solar cell SOLAR ENERGY transparent conductive |
title | Macroscopic Nonuniformities in Metal Grids Formed by Cracked Film Lithography Result in 19.3% Efficient Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroscopic%20Nonuniformities%20in%20Metal%20Grids%20Formed%20by%20Cracked%20Film%20Lithography%20Result%20in%2019.3%25%20Efficient%20Solar%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Muzzillo,%20Christopher%20P&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-06-10&rft.volume=12&rft.issue=23&rft.spage=25895&rft.epage=25902&rft.pages=25895-25902&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c04958&rft_dat=%3Cproquest_osti_%3E2402425649%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2402425649&rft_id=info:pmid/32396321&rfr_iscdi=true |