Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning
Machine learning is ideally suited for the pattern detection in large uniform data sets, but consistent experimental data sets on catalyst studies are often small. Here we demonstrate how a combination of machine learning and first-principles calculations can be used to extract knowledge from a rela...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2020-08, Vol.10 (16), p.9438-9444 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9444 |
---|---|
container_issue | 16 |
container_start_page | 9438 |
container_title | ACS catalysis |
container_volume | 10 |
creator | Artrith, Nongnuch Lin, Zhexi Chen, Jingguang G |
description | Machine learning is ideally suited for the pattern detection in large uniform data sets, but consistent experimental data sets on catalyst studies are often small. Here we demonstrate how a combination of machine learning and first-principles calculations can be used to extract knowledge from a relatively small set of experimental data. The approach is based on combining a complex machine-learning model trained on a computational library of transition-state energies with simple linear regression models of experimental catalytic activities and selectivities from the literature. Using the combined model, we identify the key C–C bond-scission reactions involved in ethanol reforming and perform a computational screening for ethanol reforming on monolayer bimetallic catalysts with architectures TM–Pt–Pt(111) and Pt–TM–Pt(111) (TM = 3d transition metals). The model also predicts four promising catalyst compositions for future experimental studies. The approach is not limited to ethanol reforming but is of general use for the interpretation of experimental observations as well as for the computational discovery of catalytic materials. |
doi_str_mv | 10.1021/acscatal.0c02089 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1659748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c464354623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-929c680e29af0f5ff6018cc7afbe7c83c6e7a1dff3be9190be24e38633743ff33</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgqb17DJ5tTTabfRxrqQ9oUXycQzqduCnbrCSp0H9vlrbgxTnMfDPzzQzzEXLN2YSzjN9pCKCjbicMWMaq-owMMi7lWOZCnv_Bl2QUwoYly2VRlWxA_KvHtYVo3ReNDdJpgj827ql2a_qOLZ7yztB7u8V0pLVAlz2gs_7mPsRATefpPDbadS19w5Rt-4W70PulhsY6pAvU3qXCFbkwug04OsYh-XyYf8yexouXx-fZdDHWOZdxXGc1FBXDrNaGGWlMwXgFUGqzwhIqAQWWmq-NESusec1WmOUoqkKIMhepKobk5rC3C9GqADYiNNA5l35SvJB1mVeJxA4k8F0IHo369nar_V5xpnpt1UlbddQ2jdweRlJHbbqdd-mL_-m_igF_SA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning</title><source>ACS Publications</source><creator>Artrith, Nongnuch ; Lin, Zhexi ; Chen, Jingguang G</creator><creatorcontrib>Artrith, Nongnuch ; Lin, Zhexi ; Chen, Jingguang G ; Columbia Univ., New York, NY (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Machine learning is ideally suited for the pattern detection in large uniform data sets, but consistent experimental data sets on catalyst studies are often small. Here we demonstrate how a combination of machine learning and first-principles calculations can be used to extract knowledge from a relatively small set of experimental data. The approach is based on combining a complex machine-learning model trained on a computational library of transition-state energies with simple linear regression models of experimental catalytic activities and selectivities from the literature. Using the combined model, we identify the key C–C bond-scission reactions involved in ethanol reforming and perform a computational screening for ethanol reforming on monolayer bimetallic catalysts with architectures TM–Pt–Pt(111) and Pt–TM–Pt(111) (TM = 3d transition metals). The model also predicts four promising catalyst compositions for future experimental studies. The approach is not limited to ethanol reforming but is of general use for the interpretation of experimental observations as well as for the computational discovery of catalytic materials.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.0c02089</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>bimetallic catalysts ; density-functional theory ; Ethanol reforming ; Gaussian process regression ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; machine learning ; random forest regression ; transition states</subject><ispartof>ACS catalysis, 2020-08, Vol.10 (16), p.9438-9444</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-929c680e29af0f5ff6018cc7afbe7c83c6e7a1dff3be9190be24e38633743ff33</citedby><cites>FETCH-LOGICAL-a415t-929c680e29af0f5ff6018cc7afbe7c83c6e7a1dff3be9190be24e38633743ff33</cites><orcidid>0000-0003-1153-6583 ; 0000000311536583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.0c02089$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.0c02089$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1659748$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Artrith, Nongnuch</creatorcontrib><creatorcontrib>Lin, Zhexi</creatorcontrib><creatorcontrib>Chen, Jingguang G</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Machine learning is ideally suited for the pattern detection in large uniform data sets, but consistent experimental data sets on catalyst studies are often small. Here we demonstrate how a combination of machine learning and first-principles calculations can be used to extract knowledge from a relatively small set of experimental data. The approach is based on combining a complex machine-learning model trained on a computational library of transition-state energies with simple linear regression models of experimental catalytic activities and selectivities from the literature. Using the combined model, we identify the key C–C bond-scission reactions involved in ethanol reforming and perform a computational screening for ethanol reforming on monolayer bimetallic catalysts with architectures TM–Pt–Pt(111) and Pt–TM–Pt(111) (TM = 3d transition metals). The model also predicts four promising catalyst compositions for future experimental studies. The approach is not limited to ethanol reforming but is of general use for the interpretation of experimental observations as well as for the computational discovery of catalytic materials.</description><subject>bimetallic catalysts</subject><subject>density-functional theory</subject><subject>Ethanol reforming</subject><subject>Gaussian process regression</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>machine learning</subject><subject>random forest regression</subject><subject>transition states</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgqb17DJ5tTTabfRxrqQ9oUXycQzqduCnbrCSp0H9vlrbgxTnMfDPzzQzzEXLN2YSzjN9pCKCjbicMWMaq-owMMi7lWOZCnv_Bl2QUwoYly2VRlWxA_KvHtYVo3ReNDdJpgj827ql2a_qOLZ7yztB7u8V0pLVAlz2gs_7mPsRATefpPDbadS19w5Rt-4W70PulhsY6pAvU3qXCFbkwug04OsYh-XyYf8yexouXx-fZdDHWOZdxXGc1FBXDrNaGGWlMwXgFUGqzwhIqAQWWmq-NESusec1WmOUoqkKIMhepKobk5rC3C9GqADYiNNA5l35SvJB1mVeJxA4k8F0IHo369nar_V5xpnpt1UlbddQ2jdweRlJHbbqdd-mL_-m_igF_SA</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Artrith, Nongnuch</creator><creator>Lin, Zhexi</creator><creator>Chen, Jingguang G</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1153-6583</orcidid><orcidid>https://orcid.org/0000000311536583</orcidid></search><sort><creationdate>20200821</creationdate><title>Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning</title><author>Artrith, Nongnuch ; Lin, Zhexi ; Chen, Jingguang G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-929c680e29af0f5ff6018cc7afbe7c83c6e7a1dff3be9190be24e38633743ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bimetallic catalysts</topic><topic>density-functional theory</topic><topic>Ethanol reforming</topic><topic>Gaussian process regression</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>machine learning</topic><topic>random forest regression</topic><topic>transition states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artrith, Nongnuch</creatorcontrib><creatorcontrib>Lin, Zhexi</creatorcontrib><creatorcontrib>Chen, Jingguang G</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artrith, Nongnuch</au><au>Lin, Zhexi</au><au>Chen, Jingguang G</au><aucorp>Columbia Univ., New York, NY (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-08-21</date><risdate>2020</risdate><volume>10</volume><issue>16</issue><spage>9438</spage><epage>9444</epage><pages>9438-9444</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Machine learning is ideally suited for the pattern detection in large uniform data sets, but consistent experimental data sets on catalyst studies are often small. Here we demonstrate how a combination of machine learning and first-principles calculations can be used to extract knowledge from a relatively small set of experimental data. The approach is based on combining a complex machine-learning model trained on a computational library of transition-state energies with simple linear regression models of experimental catalytic activities and selectivities from the literature. Using the combined model, we identify the key C–C bond-scission reactions involved in ethanol reforming and perform a computational screening for ethanol reforming on monolayer bimetallic catalysts with architectures TM–Pt–Pt(111) and Pt–TM–Pt(111) (TM = 3d transition metals). The model also predicts four promising catalyst compositions for future experimental studies. The approach is not limited to ethanol reforming but is of general use for the interpretation of experimental observations as well as for the computational discovery of catalytic materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.0c02089</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1153-6583</orcidid><orcidid>https://orcid.org/0000000311536583</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-5435 |
ispartof | ACS catalysis, 2020-08, Vol.10 (16), p.9438-9444 |
issn | 2155-5435 2155-5435 |
language | eng |
recordid | cdi_osti_scitechconnect_1659748 |
source | ACS Publications |
subjects | bimetallic catalysts density-functional theory Ethanol reforming Gaussian process regression INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY machine learning random forest regression transition states |
title | Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Activity%20and%20Selectivity%20of%20Bimetallic%20Metal%20Catalysts%20for%20Ethanol%20Reforming%20using%20Machine%20Learning&rft.jtitle=ACS%20catalysis&rft.au=Artrith,%20Nongnuch&rft.aucorp=Columbia%20Univ.,%20New%20York,%20NY%20(United%20States)&rft.date=2020-08-21&rft.volume=10&rft.issue=16&rft.spage=9438&rft.epage=9444&rft.pages=9438-9444&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.0c02089&rft_dat=%3Cacs_osti_%3Ec464354623%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |