Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning

Machine learning is ideally suited for the pattern detection in large uniform data sets, but consistent experimental data sets on catalyst studies are often small. Here we demonstrate how a combination of machine learning and first-principles calculations can be used to extract knowledge from a rela...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2020-08, Vol.10 (16), p.9438-9444
Hauptverfasser: Artrith, Nongnuch, Lin, Zhexi, Chen, Jingguang G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9444
container_issue 16
container_start_page 9438
container_title ACS catalysis
container_volume 10
creator Artrith, Nongnuch
Lin, Zhexi
Chen, Jingguang G
description Machine learning is ideally suited for the pattern detection in large uniform data sets, but consistent experimental data sets on catalyst studies are often small. Here we demonstrate how a combination of machine learning and first-principles calculations can be used to extract knowledge from a relatively small set of experimental data. The approach is based on combining a complex machine-learning model trained on a computational library of transition-state energies with simple linear regression models of experimental catalytic activities and selectivities from the literature. Using the combined model, we identify the key C–C bond-scission reactions involved in ethanol reforming and perform a computational screening for ethanol reforming on monolayer bimetallic catalysts with architectures TM–Pt–Pt(111) and Pt–TM–Pt(111) (TM = 3d transition metals). The model also predicts four promising catalyst compositions for future experimental studies. The approach is not limited to ethanol reforming but is of general use for the interpretation of experimental observations as well as for the computational discovery of catalytic materials.
doi_str_mv 10.1021/acscatal.0c02089
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1659748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c464354623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-929c680e29af0f5ff6018cc7afbe7c83c6e7a1dff3be9190be24e38633743ff33</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgqb17DJ5tTTabfRxrqQ9oUXycQzqduCnbrCSp0H9vlrbgxTnMfDPzzQzzEXLN2YSzjN9pCKCjbicMWMaq-owMMi7lWOZCnv_Bl2QUwoYly2VRlWxA_KvHtYVo3ReNDdJpgj827ql2a_qOLZ7yztB7u8V0pLVAlz2gs_7mPsRATefpPDbadS19w5Rt-4W70PulhsY6pAvU3qXCFbkwug04OsYh-XyYf8yexouXx-fZdDHWOZdxXGc1FBXDrNaGGWlMwXgFUGqzwhIqAQWWmq-NESusec1WmOUoqkKIMhepKobk5rC3C9GqADYiNNA5l35SvJB1mVeJxA4k8F0IHo369nar_V5xpnpt1UlbddQ2jdweRlJHbbqdd-mL_-m_igF_SA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning</title><source>ACS Publications</source><creator>Artrith, Nongnuch ; Lin, Zhexi ; Chen, Jingguang G</creator><creatorcontrib>Artrith, Nongnuch ; Lin, Zhexi ; Chen, Jingguang G ; Columbia Univ., New York, NY (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Machine learning is ideally suited for the pattern detection in large uniform data sets, but consistent experimental data sets on catalyst studies are often small. Here we demonstrate how a combination of machine learning and first-principles calculations can be used to extract knowledge from a relatively small set of experimental data. The approach is based on combining a complex machine-learning model trained on a computational library of transition-state energies with simple linear regression models of experimental catalytic activities and selectivities from the literature. Using the combined model, we identify the key C–C bond-scission reactions involved in ethanol reforming and perform a computational screening for ethanol reforming on monolayer bimetallic catalysts with architectures TM–Pt–Pt(111) and Pt–TM–Pt(111) (TM = 3d transition metals). The model also predicts four promising catalyst compositions for future experimental studies. The approach is not limited to ethanol reforming but is of general use for the interpretation of experimental observations as well as for the computational discovery of catalytic materials.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.0c02089</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>bimetallic catalysts ; density-functional theory ; Ethanol reforming ; Gaussian process regression ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; machine learning ; random forest regression ; transition states</subject><ispartof>ACS catalysis, 2020-08, Vol.10 (16), p.9438-9444</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-929c680e29af0f5ff6018cc7afbe7c83c6e7a1dff3be9190be24e38633743ff33</citedby><cites>FETCH-LOGICAL-a415t-929c680e29af0f5ff6018cc7afbe7c83c6e7a1dff3be9190be24e38633743ff33</cites><orcidid>0000-0003-1153-6583 ; 0000000311536583</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.0c02089$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.0c02089$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1659748$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Artrith, Nongnuch</creatorcontrib><creatorcontrib>Lin, Zhexi</creatorcontrib><creatorcontrib>Chen, Jingguang G</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Machine learning is ideally suited for the pattern detection in large uniform data sets, but consistent experimental data sets on catalyst studies are often small. Here we demonstrate how a combination of machine learning and first-principles calculations can be used to extract knowledge from a relatively small set of experimental data. The approach is based on combining a complex machine-learning model trained on a computational library of transition-state energies with simple linear regression models of experimental catalytic activities and selectivities from the literature. Using the combined model, we identify the key C–C bond-scission reactions involved in ethanol reforming and perform a computational screening for ethanol reforming on monolayer bimetallic catalysts with architectures TM–Pt–Pt(111) and Pt–TM–Pt(111) (TM = 3d transition metals). The model also predicts four promising catalyst compositions for future experimental studies. The approach is not limited to ethanol reforming but is of general use for the interpretation of experimental observations as well as for the computational discovery of catalytic materials.</description><subject>bimetallic catalysts</subject><subject>density-functional theory</subject><subject>Ethanol reforming</subject><subject>Gaussian process regression</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>machine learning</subject><subject>random forest regression</subject><subject>transition states</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgqb17DJ5tTTabfRxrqQ9oUXycQzqduCnbrCSp0H9vlrbgxTnMfDPzzQzzEXLN2YSzjN9pCKCjbicMWMaq-owMMi7lWOZCnv_Bl2QUwoYly2VRlWxA_KvHtYVo3ReNDdJpgj827ql2a_qOLZ7yztB7u8V0pLVAlz2gs_7mPsRATefpPDbadS19w5Rt-4W70PulhsY6pAvU3qXCFbkwug04OsYh-XyYf8yexouXx-fZdDHWOZdxXGc1FBXDrNaGGWlMwXgFUGqzwhIqAQWWmq-NESusec1WmOUoqkKIMhepKobk5rC3C9GqADYiNNA5l35SvJB1mVeJxA4k8F0IHo369nar_V5xpnpt1UlbddQ2jdweRlJHbbqdd-mL_-m_igF_SA</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Artrith, Nongnuch</creator><creator>Lin, Zhexi</creator><creator>Chen, Jingguang G</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1153-6583</orcidid><orcidid>https://orcid.org/0000000311536583</orcidid></search><sort><creationdate>20200821</creationdate><title>Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning</title><author>Artrith, Nongnuch ; Lin, Zhexi ; Chen, Jingguang G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-929c680e29af0f5ff6018cc7afbe7c83c6e7a1dff3be9190be24e38633743ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bimetallic catalysts</topic><topic>density-functional theory</topic><topic>Ethanol reforming</topic><topic>Gaussian process regression</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>machine learning</topic><topic>random forest regression</topic><topic>transition states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artrith, Nongnuch</creatorcontrib><creatorcontrib>Lin, Zhexi</creatorcontrib><creatorcontrib>Chen, Jingguang G</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artrith, Nongnuch</au><au>Lin, Zhexi</au><au>Chen, Jingguang G</au><aucorp>Columbia Univ., New York, NY (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-08-21</date><risdate>2020</risdate><volume>10</volume><issue>16</issue><spage>9438</spage><epage>9444</epage><pages>9438-9444</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Machine learning is ideally suited for the pattern detection in large uniform data sets, but consistent experimental data sets on catalyst studies are often small. Here we demonstrate how a combination of machine learning and first-principles calculations can be used to extract knowledge from a relatively small set of experimental data. The approach is based on combining a complex machine-learning model trained on a computational library of transition-state energies with simple linear regression models of experimental catalytic activities and selectivities from the literature. Using the combined model, we identify the key C–C bond-scission reactions involved in ethanol reforming and perform a computational screening for ethanol reforming on monolayer bimetallic catalysts with architectures TM–Pt–Pt(111) and Pt–TM–Pt(111) (TM = 3d transition metals). The model also predicts four promising catalyst compositions for future experimental studies. The approach is not limited to ethanol reforming but is of general use for the interpretation of experimental observations as well as for the computational discovery of catalytic materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acscatal.0c02089</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1153-6583</orcidid><orcidid>https://orcid.org/0000000311536583</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2020-08, Vol.10 (16), p.9438-9444
issn 2155-5435
2155-5435
language eng
recordid cdi_osti_scitechconnect_1659748
source ACS Publications
subjects bimetallic catalysts
density-functional theory
Ethanol reforming
Gaussian process regression
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
machine learning
random forest regression
transition states
title Predicting the Activity and Selectivity of Bimetallic Metal Catalysts for Ethanol Reforming using Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Activity%20and%20Selectivity%20of%20Bimetallic%20Metal%20Catalysts%20for%20Ethanol%20Reforming%20using%20Machine%20Learning&rft.jtitle=ACS%20catalysis&rft.au=Artrith,%20Nongnuch&rft.aucorp=Columbia%20Univ.,%20New%20York,%20NY%20(United%20States)&rft.date=2020-08-21&rft.volume=10&rft.issue=16&rft.spage=9438&rft.epage=9444&rft.pages=9438-9444&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.0c02089&rft_dat=%3Cacs_osti_%3Ec464354623%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true