Tailoring Interfacial Interactions via Polymer-Grafted Nanoparticles Improves Performance of Parts Created by 3D Printing

Decorating nanoparticle surfaces with end-tethered chains provides a way to mediate interfacial interactions in polymer nanocomposites. Here, polymer-grafted nanoparticles are investigated for their impact on the performance of polymer structures created by fused filament fabrication (FFF). The nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied polymer materials 2020-02, Vol.2 (3)
Hauptverfasser: Street, Dayton P., Mah, Adeline Huizhen, Ledford, William K., Patterson, Steven, Bergman, James A., Lokitz, Bradley S., Pickel, Deanna L., Messman, Jamie M., Stein, Gila E., Kilbey, S. Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title ACS applied polymer materials
container_volume 2
creator Street, Dayton P.
Mah, Adeline Huizhen
Ledford, William K.
Patterson, Steven
Bergman, James A.
Lokitz, Bradley S.
Pickel, Deanna L.
Messman, Jamie M.
Stein, Gila E.
Kilbey, S. Michael
description Decorating nanoparticle surfaces with end-tethered chains provides a way to mediate interfacial interactions in polymer nanocomposites. Here, polymer-grafted nanoparticles are investigated for their impact on the performance of polymer structures created by fused filament fabrication (FFF). The nanoscale organization of poly(methyl methacrylate)-grafted nanoparticles (PMMA-g-NPs) in PMMA matrices is examined via small-angle X-ray scattering (SAXS). SAXS data indicate that all nanocomposites exhibit particle–particle interactions, indicating that nanoparticles are locally clustered. Additionally, increasing the loading level of PMMA-g-NPs produces modest changes in Tg but significant increases in the complex viscosity and storage modulus, suggesting that the number density of entanglements between graft chains and the matrix polymer increases with increasing PMMA-g-NP content. Increasing the number density of entanglements and the formation of localized clusters manifest at the macroscale: Dynamic mechanical analysis and tensile testing show that FFF-printed PMMA-g-NPs/PMMA nanocomposites display a 65% increase in the Young’s modulus, 116% increase in the ultimate tensile strength, and a 120% increase in the storage modulus compared to parts printed with pure (unfilled) PMMA. This research effort highlights how interfacial engineering can be used to enhance interactions on the nanoscale and improve the macroscopic properties of parts printed by FFF.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1659566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1659566</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16595663</originalsourceid><addsrcrecordid>eNqNjT1rwzAURUVpIKb1f3hkN9hyrZDZ6YeX4iF7eFGeEwVZz0jC4H9flWbI2Ome4d57nkQmVb0tVFU2zw-8FnkIt7IsZSXfZCMzsRzQWPbGXaBzkfyA2qD9Y9TRsAswG4Se7TKSLz49DpHO8I2OJ_TRaEsBunHyPCfo0wP7EZ0m4AH61AjQesLfzWmBeg99ksXkexWrAW2g_J4vYvPxfmi_Cg7RHIM2kfRVs3Ok47FSza5Rqv5X6Qc_FFAt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tailoring Interfacial Interactions via Polymer-Grafted Nanoparticles Improves Performance of Parts Created by 3D Printing</title><source>ACS Publications</source><creator>Street, Dayton P. ; Mah, Adeline Huizhen ; Ledford, William K. ; Patterson, Steven ; Bergman, James A. ; Lokitz, Bradley S. ; Pickel, Deanna L. ; Messman, Jamie M. ; Stein, Gila E. ; Kilbey, S. Michael</creator><creatorcontrib>Street, Dayton P. ; Mah, Adeline Huizhen ; Ledford, William K. ; Patterson, Steven ; Bergman, James A. ; Lokitz, Bradley S. ; Pickel, Deanna L. ; Messman, Jamie M. ; Stein, Gila E. ; Kilbey, S. Michael ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Decorating nanoparticle surfaces with end-tethered chains provides a way to mediate interfacial interactions in polymer nanocomposites. Here, polymer-grafted nanoparticles are investigated for their impact on the performance of polymer structures created by fused filament fabrication (FFF). The nanoscale organization of poly(methyl methacrylate)-grafted nanoparticles (PMMA-g-NPs) in PMMA matrices is examined via small-angle X-ray scattering (SAXS). SAXS data indicate that all nanocomposites exhibit particle–particle interactions, indicating that nanoparticles are locally clustered. Additionally, increasing the loading level of PMMA-g-NPs produces modest changes in Tg but significant increases in the complex viscosity and storage modulus, suggesting that the number density of entanglements between graft chains and the matrix polymer increases with increasing PMMA-g-NP content. Increasing the number density of entanglements and the formation of localized clusters manifest at the macroscale: Dynamic mechanical analysis and tensile testing show that FFF-printed PMMA-g-NPs/PMMA nanocomposites display a 65% increase in the Young’s modulus, 116% increase in the ultimate tensile strength, and a 120% increase in the storage modulus compared to parts printed with pure (unfilled) PMMA. This research effort highlights how interfacial engineering can be used to enhance interactions on the nanoscale and improve the macroscopic properties of parts printed by FFF.</description><identifier>ISSN: 2637-6105</identifier><identifier>EISSN: 2637-6105</identifier><language>eng</language><publisher>United States: ACS Publications</publisher><subject>3D printing ; MATERIALS SCIENCE ; nanocomposites ; nanoparticles ; organic compounds ; polymer grafting ; polymer nanocomposite ; polymers ; small-angle X-ray scattering ; thermomechanical properties ; x-ray scattering</subject><ispartof>ACS applied polymer materials, 2020-02, Vol.2 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000239734496 ; 0000000212296078 ; 0000000294311138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1659566$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Street, Dayton P.</creatorcontrib><creatorcontrib>Mah, Adeline Huizhen</creatorcontrib><creatorcontrib>Ledford, William K.</creatorcontrib><creatorcontrib>Patterson, Steven</creatorcontrib><creatorcontrib>Bergman, James A.</creatorcontrib><creatorcontrib>Lokitz, Bradley S.</creatorcontrib><creatorcontrib>Pickel, Deanna L.</creatorcontrib><creatorcontrib>Messman, Jamie M.</creatorcontrib><creatorcontrib>Stein, Gila E.</creatorcontrib><creatorcontrib>Kilbey, S. Michael</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Tailoring Interfacial Interactions via Polymer-Grafted Nanoparticles Improves Performance of Parts Created by 3D Printing</title><title>ACS applied polymer materials</title><description>Decorating nanoparticle surfaces with end-tethered chains provides a way to mediate interfacial interactions in polymer nanocomposites. Here, polymer-grafted nanoparticles are investigated for their impact on the performance of polymer structures created by fused filament fabrication (FFF). The nanoscale organization of poly(methyl methacrylate)-grafted nanoparticles (PMMA-g-NPs) in PMMA matrices is examined via small-angle X-ray scattering (SAXS). SAXS data indicate that all nanocomposites exhibit particle–particle interactions, indicating that nanoparticles are locally clustered. Additionally, increasing the loading level of PMMA-g-NPs produces modest changes in Tg but significant increases in the complex viscosity and storage modulus, suggesting that the number density of entanglements between graft chains and the matrix polymer increases with increasing PMMA-g-NP content. Increasing the number density of entanglements and the formation of localized clusters manifest at the macroscale: Dynamic mechanical analysis and tensile testing show that FFF-printed PMMA-g-NPs/PMMA nanocomposites display a 65% increase in the Young’s modulus, 116% increase in the ultimate tensile strength, and a 120% increase in the storage modulus compared to parts printed with pure (unfilled) PMMA. This research effort highlights how interfacial engineering can be used to enhance interactions on the nanoscale and improve the macroscopic properties of parts printed by FFF.</description><subject>3D printing</subject><subject>MATERIALS SCIENCE</subject><subject>nanocomposites</subject><subject>nanoparticles</subject><subject>organic compounds</subject><subject>polymer grafting</subject><subject>polymer nanocomposite</subject><subject>polymers</subject><subject>small-angle X-ray scattering</subject><subject>thermomechanical properties</subject><subject>x-ray scattering</subject><issn>2637-6105</issn><issn>2637-6105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjT1rwzAURUVpIKb1f3hkN9hyrZDZ6YeX4iF7eFGeEwVZz0jC4H9flWbI2Ome4d57nkQmVb0tVFU2zw-8FnkIt7IsZSXfZCMzsRzQWPbGXaBzkfyA2qD9Y9TRsAswG4Se7TKSLz49DpHO8I2OJ_TRaEsBunHyPCfo0wP7EZ0m4AH61AjQesLfzWmBeg99ksXkexWrAW2g_J4vYvPxfmi_Cg7RHIM2kfRVs3Ok47FSza5Rqv5X6Qc_FFAt</recordid><startdate>20200210</startdate><enddate>20200210</enddate><creator>Street, Dayton P.</creator><creator>Mah, Adeline Huizhen</creator><creator>Ledford, William K.</creator><creator>Patterson, Steven</creator><creator>Bergman, James A.</creator><creator>Lokitz, Bradley S.</creator><creator>Pickel, Deanna L.</creator><creator>Messman, Jamie M.</creator><creator>Stein, Gila E.</creator><creator>Kilbey, S. Michael</creator><general>ACS Publications</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000239734496</orcidid><orcidid>https://orcid.org/0000000212296078</orcidid><orcidid>https://orcid.org/0000000294311138</orcidid></search><sort><creationdate>20200210</creationdate><title>Tailoring Interfacial Interactions via Polymer-Grafted Nanoparticles Improves Performance of Parts Created by 3D Printing</title><author>Street, Dayton P. ; Mah, Adeline Huizhen ; Ledford, William K. ; Patterson, Steven ; Bergman, James A. ; Lokitz, Bradley S. ; Pickel, Deanna L. ; Messman, Jamie M. ; Stein, Gila E. ; Kilbey, S. Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16595663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D printing</topic><topic>MATERIALS SCIENCE</topic><topic>nanocomposites</topic><topic>nanoparticles</topic><topic>organic compounds</topic><topic>polymer grafting</topic><topic>polymer nanocomposite</topic><topic>polymers</topic><topic>small-angle X-ray scattering</topic><topic>thermomechanical properties</topic><topic>x-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Street, Dayton P.</creatorcontrib><creatorcontrib>Mah, Adeline Huizhen</creatorcontrib><creatorcontrib>Ledford, William K.</creatorcontrib><creatorcontrib>Patterson, Steven</creatorcontrib><creatorcontrib>Bergman, James A.</creatorcontrib><creatorcontrib>Lokitz, Bradley S.</creatorcontrib><creatorcontrib>Pickel, Deanna L.</creatorcontrib><creatorcontrib>Messman, Jamie M.</creatorcontrib><creatorcontrib>Stein, Gila E.</creatorcontrib><creatorcontrib>Kilbey, S. Michael</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS applied polymer materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Street, Dayton P.</au><au>Mah, Adeline Huizhen</au><au>Ledford, William K.</au><au>Patterson, Steven</au><au>Bergman, James A.</au><au>Lokitz, Bradley S.</au><au>Pickel, Deanna L.</au><au>Messman, Jamie M.</au><au>Stein, Gila E.</au><au>Kilbey, S. Michael</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Interfacial Interactions via Polymer-Grafted Nanoparticles Improves Performance of Parts Created by 3D Printing</atitle><jtitle>ACS applied polymer materials</jtitle><date>2020-02-10</date><risdate>2020</risdate><volume>2</volume><issue>3</issue><issn>2637-6105</issn><eissn>2637-6105</eissn><abstract>Decorating nanoparticle surfaces with end-tethered chains provides a way to mediate interfacial interactions in polymer nanocomposites. Here, polymer-grafted nanoparticles are investigated for their impact on the performance of polymer structures created by fused filament fabrication (FFF). The nanoscale organization of poly(methyl methacrylate)-grafted nanoparticles (PMMA-g-NPs) in PMMA matrices is examined via small-angle X-ray scattering (SAXS). SAXS data indicate that all nanocomposites exhibit particle–particle interactions, indicating that nanoparticles are locally clustered. Additionally, increasing the loading level of PMMA-g-NPs produces modest changes in Tg but significant increases in the complex viscosity and storage modulus, suggesting that the number density of entanglements between graft chains and the matrix polymer increases with increasing PMMA-g-NP content. Increasing the number density of entanglements and the formation of localized clusters manifest at the macroscale: Dynamic mechanical analysis and tensile testing show that FFF-printed PMMA-g-NPs/PMMA nanocomposites display a 65% increase in the Young’s modulus, 116% increase in the ultimate tensile strength, and a 120% increase in the storage modulus compared to parts printed with pure (unfilled) PMMA. This research effort highlights how interfacial engineering can be used to enhance interactions on the nanoscale and improve the macroscopic properties of parts printed by FFF.</abstract><cop>United States</cop><pub>ACS Publications</pub><orcidid>https://orcid.org/0000000239734496</orcidid><orcidid>https://orcid.org/0000000212296078</orcidid><orcidid>https://orcid.org/0000000294311138</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2637-6105
ispartof ACS applied polymer materials, 2020-02, Vol.2 (3)
issn 2637-6105
2637-6105
language eng
recordid cdi_osti_scitechconnect_1659566
source ACS Publications
subjects 3D printing
MATERIALS SCIENCE
nanocomposites
nanoparticles
organic compounds
polymer grafting
polymer nanocomposite
polymers
small-angle X-ray scattering
thermomechanical properties
x-ray scattering
title Tailoring Interfacial Interactions via Polymer-Grafted Nanoparticles Improves Performance of Parts Created by 3D Printing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Interfacial%20Interactions%20via%20Polymer-Grafted%20Nanoparticles%20Improves%20Performance%20of%20Parts%20Created%20by%203D%20Printing&rft.jtitle=ACS%20applied%20polymer%20materials&rft.au=Street,%20Dayton%20P.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-02-10&rft.volume=2&rft.issue=3&rft.issn=2637-6105&rft.eissn=2637-6105&rft_id=info:doi/&rft_dat=%3Costi%3E1659566%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true