A Bayesian analysis of nuclear deformation properties with Skyrme energy functionals

In spite of numerous scientific and practical applications, there is still no comprehensive theoretical description of the nuclear fission process based solely on protons, neutrons and their interactions. The most advanced simulations of fission are currently carried out within nuclear density funct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. G, Nuclear and particle physics Nuclear and particle physics, 2020-10, Vol.47 (10), p.104002, Article 104002
Hauptverfasser: Schunck, N, Quinlan, K R, Bernstein, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In spite of numerous scientific and practical applications, there is still no comprehensive theoretical description of the nuclear fission process based solely on protons, neutrons and their interactions. The most advanced simulations of fission are currently carried out within nuclear density functional theory (DFT). In spite of being fully quantum-mechanical and rooted in the theory of nuclear forces, DFT still depends on a dozen or so parameters characterizing the energy functional. Calibrating these parameters on experimental data results in uncertainties that must be quantified for applications. This task is very challenging because of the high computational cost of DFT calculations for fission. In this paper, we use Gaussian processes to build emulators of DFT models in order to quantify and propagate statistical uncertainties of theoretical predictions for a range of nuclear deformations relevant to describing the fission process.
ISSN:0954-3899
1361-6471
DOI:10.1088/1361-6471/aba4fa