Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information

Reliable near real-time precipitation estimates are essential for monitoring and managing of natural disasters such as floods. Quality of inputs and capability of the retrieval algorithm are two important aspects for developing satellite-based precipitation datasets. Most retrieval algorithms utiliz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news 2020-12, Vol.134 (C), p.104856, Article 104856
Hauptverfasser: Sadeghi, Mojtaba, Nguyen, Phu, Hsu, Kuolin, Sorooshian, Soroosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 104856
container_title Environmental modelling & software : with environment data news
container_volume 134
creator Sadeghi, Mojtaba
Nguyen, Phu
Hsu, Kuolin
Sorooshian, Soroosh
description Reliable near real-time precipitation estimates are essential for monitoring and managing of natural disasters such as floods. Quality of inputs and capability of the retrieval algorithm are two important aspects for developing satellite-based precipitation datasets. Most retrieval algorithms utilize infrared (IR) information as their input due to its fine spatiotemporal resolution and near-instantaneous availability. However, their sole reliance on IR information limits their capability to learn different mechanisms of precipitation during training, resulting in less accurate estimates. Moreover, recent advances in the field of machine learning offer attractive opportunities to improve the precipitation retrieval algorithms. This study investigates the effectiveness of adding geographical information (i.e. latitude and longitude) to IR information and the application of a U-Net-based convolutional neural network for improving the accuracy of retrieval algorithms. This research suggests that applying an appropriate CNN architecture on geographical and IR information provides an opportunity to improve the satellite-based precipitation products. [Display omitted] •Recent advances in the field of deep neural network (DNN) offer attractive opportunities to improve the precipitation retrieval algorithms.•A CNN-based model—leveraging both geographical and IR information—shows a higher precipitation estimation accuracy than a model that only utilizes IR information.•Applying an appropriate U-Net CNN architecture on geographical and IR information provides an opportunity to improve the current satellite-based precipitation products.
doi_str_mv 10.1016/j.envsoft.2020.104856
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1658433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815220309130</els_id><sourcerecordid>2468689953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-997535e99118be4ddb1013c840f14c63e0ac153ac5760b6b62765e2defa20d533</originalsourceid><addsrcrecordid>eNqFUctOwzAQjBBIlMInIEVwTrHjR5ITQohHpQou9Gw5zqZ1ae1gO0X9e5ymd0672p0dzewkyS1GM4wwf9jMwOy9bcMsR_kwoyXjZ8kElwXJeJHz89gTTrMSs_wyufJ-gxCKPZ0kh_muc3avzSo1IF3qQG6zoHeQdg6U7nSQQVuTgo_Dse39gJbpMvuAkCpr9nbbDxu5jRy9O5bwa913Kk2TrsCunOzWWsWFNq11I891ctHKrYebU50my9eXr-f3bPH5Nn9-WmSKYhyyqioYYVBVGJc10Kapo2eiSopaTBUngKTCjEjFCo5qXvO84AzyBlqZo4YRMk3uRl4bLQivdAC1jqoNqCAwZyUlA-h-BMVn_PTRrNjY3kVHXuSUl7ysqiMVG1HKWe8dtKJz8SvuIDASQxRiI05RiCEKMUYR7x7HO4g-9xrcIAOMgka7QUVj9T8Mfxmflrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468689953</pqid></control><display><type>article</type><title>Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sadeghi, Mojtaba ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh</creator><creatorcontrib>Sadeghi, Mojtaba ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh</creatorcontrib><description>Reliable near real-time precipitation estimates are essential for monitoring and managing of natural disasters such as floods. Quality of inputs and capability of the retrieval algorithm are two important aspects for developing satellite-based precipitation datasets. Most retrieval algorithms utilize infrared (IR) information as their input due to its fine spatiotemporal resolution and near-instantaneous availability. However, their sole reliance on IR information limits their capability to learn different mechanisms of precipitation during training, resulting in less accurate estimates. Moreover, recent advances in the field of machine learning offer attractive opportunities to improve the precipitation retrieval algorithms. This study investigates the effectiveness of adding geographical information (i.e. latitude and longitude) to IR information and the application of a U-Net-based convolutional neural network for improving the accuracy of retrieval algorithms. This research suggests that applying an appropriate CNN architecture on geographical and IR information provides an opportunity to improve the satellite-based precipitation products. [Display omitted] •Recent advances in the field of deep neural network (DNN) offer attractive opportunities to improve the precipitation retrieval algorithms.•A CNN-based model—leveraging both geographical and IR information—shows a higher precipitation estimation accuracy than a model that only utilizes IR information.•Applying an appropriate U-Net CNN architecture on geographical and IR information provides an opportunity to improve the current satellite-based precipitation products.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2020.104856</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Artificial neural networks ; Convolutional neural networks ; Deep learning ; Disaster management ; Flood management ; Hydrologic data ; Information processing ; Infrared information ; Learning algorithms ; Machine learning ; Meteorological satellites ; Natural disasters ; Neural networks ; Precipitation ; Precipitation estimation ; Real time ; Retrieval</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2020-12, Vol.134 (C), p.104856, Article 104856</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-997535e99118be4ddb1013c840f14c63e0ac153ac5760b6b62765e2defa20d533</citedby><cites>FETCH-LOGICAL-c411t-997535e99118be4ddb1013c840f14c63e0ac153ac5760b6b62765e2defa20d533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envsoft.2020.104856$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1658433$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadeghi, Mojtaba</creatorcontrib><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><title>Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information</title><title>Environmental modelling &amp; software : with environment data news</title><description>Reliable near real-time precipitation estimates are essential for monitoring and managing of natural disasters such as floods. Quality of inputs and capability of the retrieval algorithm are two important aspects for developing satellite-based precipitation datasets. Most retrieval algorithms utilize infrared (IR) information as their input due to its fine spatiotemporal resolution and near-instantaneous availability. However, their sole reliance on IR information limits their capability to learn different mechanisms of precipitation during training, resulting in less accurate estimates. Moreover, recent advances in the field of machine learning offer attractive opportunities to improve the precipitation retrieval algorithms. This study investigates the effectiveness of adding geographical information (i.e. latitude and longitude) to IR information and the application of a U-Net-based convolutional neural network for improving the accuracy of retrieval algorithms. This research suggests that applying an appropriate CNN architecture on geographical and IR information provides an opportunity to improve the satellite-based precipitation products. [Display omitted] •Recent advances in the field of deep neural network (DNN) offer attractive opportunities to improve the precipitation retrieval algorithms.•A CNN-based model—leveraging both geographical and IR information—shows a higher precipitation estimation accuracy than a model that only utilizes IR information.•Applying an appropriate U-Net CNN architecture on geographical and IR information provides an opportunity to improve the current satellite-based precipitation products.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Disaster management</subject><subject>Flood management</subject><subject>Hydrologic data</subject><subject>Information processing</subject><subject>Infrared information</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Meteorological satellites</subject><subject>Natural disasters</subject><subject>Neural networks</subject><subject>Precipitation</subject><subject>Precipitation estimation</subject><subject>Real time</subject><subject>Retrieval</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUctOwzAQjBBIlMInIEVwTrHjR5ITQohHpQou9Gw5zqZ1ae1gO0X9e5ymd0672p0dzewkyS1GM4wwf9jMwOy9bcMsR_kwoyXjZ8kElwXJeJHz89gTTrMSs_wyufJ-gxCKPZ0kh_muc3avzSo1IF3qQG6zoHeQdg6U7nSQQVuTgo_Dse39gJbpMvuAkCpr9nbbDxu5jRy9O5bwa913Kk2TrsCunOzWWsWFNq11I891ctHKrYebU50my9eXr-f3bPH5Nn9-WmSKYhyyqioYYVBVGJc10Kapo2eiSopaTBUngKTCjEjFCo5qXvO84AzyBlqZo4YRMk3uRl4bLQivdAC1jqoNqCAwZyUlA-h-BMVn_PTRrNjY3kVHXuSUl7ysqiMVG1HKWe8dtKJz8SvuIDASQxRiI05RiCEKMUYR7x7HO4g-9xrcIAOMgka7QUVj9T8Mfxmflrg</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Sadeghi, Mojtaba</creator><creator>Nguyen, Phu</creator><creator>Hsu, Kuolin</creator><creator>Sorooshian, Soroosh</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>202012</creationdate><title>Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information</title><author>Sadeghi, Mojtaba ; Nguyen, Phu ; Hsu, Kuolin ; Sorooshian, Soroosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-997535e99118be4ddb1013c840f14c63e0ac153ac5760b6b62765e2defa20d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Disaster management</topic><topic>Flood management</topic><topic>Hydrologic data</topic><topic>Information processing</topic><topic>Infrared information</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Meteorological satellites</topic><topic>Natural disasters</topic><topic>Neural networks</topic><topic>Precipitation</topic><topic>Precipitation estimation</topic><topic>Real time</topic><topic>Retrieval</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghi, Mojtaba</creatorcontrib><creatorcontrib>Nguyen, Phu</creatorcontrib><creatorcontrib>Hsu, Kuolin</creatorcontrib><creatorcontrib>Sorooshian, Soroosh</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadeghi, Mojtaba</au><au>Nguyen, Phu</au><au>Hsu, Kuolin</au><au>Sorooshian, Soroosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2020-12</date><risdate>2020</risdate><volume>134</volume><issue>C</issue><spage>104856</spage><pages>104856-</pages><artnum>104856</artnum><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Reliable near real-time precipitation estimates are essential for monitoring and managing of natural disasters such as floods. Quality of inputs and capability of the retrieval algorithm are two important aspects for developing satellite-based precipitation datasets. Most retrieval algorithms utilize infrared (IR) information as their input due to its fine spatiotemporal resolution and near-instantaneous availability. However, their sole reliance on IR information limits their capability to learn different mechanisms of precipitation during training, resulting in less accurate estimates. Moreover, recent advances in the field of machine learning offer attractive opportunities to improve the precipitation retrieval algorithms. This study investigates the effectiveness of adding geographical information (i.e. latitude and longitude) to IR information and the application of a U-Net-based convolutional neural network for improving the accuracy of retrieval algorithms. This research suggests that applying an appropriate CNN architecture on geographical and IR information provides an opportunity to improve the satellite-based precipitation products. [Display omitted] •Recent advances in the field of deep neural network (DNN) offer attractive opportunities to improve the precipitation retrieval algorithms.•A CNN-based model—leveraging both geographical and IR information—shows a higher precipitation estimation accuracy than a model that only utilizes IR information.•Applying an appropriate U-Net CNN architecture on geographical and IR information provides an opportunity to improve the current satellite-based precipitation products.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2020.104856</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2020-12, Vol.134 (C), p.104856, Article 104856
issn 1364-8152
1873-6726
language eng
recordid cdi_osti_scitechconnect_1658433
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Artificial neural networks
Convolutional neural networks
Deep learning
Disaster management
Flood management
Hydrologic data
Information processing
Infrared information
Learning algorithms
Machine learning
Meteorological satellites
Natural disasters
Neural networks
Precipitation
Precipitation estimation
Real time
Retrieval
title Improving near real-time precipitation estimation using a U-Net convolutional neural network and geographical information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20near%20real-time%20precipitation%20estimation%20using%20a%20U-Net%20convolutional%20neural%20network%20and%20geographical%20information&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Sadeghi,%20Mojtaba&rft.date=2020-12&rft.volume=134&rft.issue=C&rft.spage=104856&rft.pages=104856-&rft.artnum=104856&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2020.104856&rft_dat=%3Cproquest_osti_%3E2468689953%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468689953&rft_id=info:pmid/&rft_els_id=S1364815220309130&rfr_iscdi=true