A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis

Soil bacteria have a range of metabolic pathways that contribute to acquiring and recycling nutrients and carbon. Curiously, some of these organisms give off ethylene gas when starved for sulfur under anaerobic conditions. North et al. traced the source of ethylene to a small, sulfur-containing orga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-08, Vol.369 (6507), p.1094-1098
Hauptverfasser: North, Justin A., Narrowe, Adrienne B., Xiong, Weili, Byerly, Kathryn M., Zhao, Guanqi, Young, Sarah J., Murali, Srividya, Wildenthal, John A., Cannon, William R., Wrighton, Kelly C., Hettich, Robert L., Tabita, F. Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1098
container_issue 6507
container_start_page 1094
container_title Science (American Association for the Advancement of Science)
container_volume 369
creator North, Justin A.
Narrowe, Adrienne B.
Xiong, Weili
Byerly, Kathryn M.
Zhao, Guanqi
Young, Sarah J.
Murali, Srividya
Wildenthal, John A.
Cannon, William R.
Wrighton, Kelly C.
Hettich, Robert L.
Tabita, F. Robert
description Soil bacteria have a range of metabolic pathways that contribute to acquiring and recycling nutrients and carbon. Curiously, some of these organisms give off ethylene gas when starved for sulfur under anaerobic conditions. North et al. traced the source of ethylene to a small, sulfur-containing organic molecule produced by certain reactions in cells. Growing cells in sulfur-limiting conditions enabled them to identify the enzymes involved in sulfur salvage, and the concomitant ethylene production, through this pathway. Methane and ethane were also observed as products when appropriate substrates were provided. The key genes involved are distantly related to nitrogenase and several other reductase enzymes found in bacteria and archaea. The involvement of such nitrogenase-like genes in sulfur metabolism highlights the potential of unexplored diversity in this family of enzymes and raises many mechanistic and evolutionary questions that are now ripe for exploration. Science , this issue p. 1094 Bacterial reductases release hydrocarbons from ubiquitous volatile organic sulfur compounds to assimilate sulfur. Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C–S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.
doi_str_mv 10.1126/science.abb6310
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1658249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438683650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-9ef950c4bb92ae23cc4280b548471012518cd33cdff69232507fc6b828b0d3953</originalsourceid><addsrcrecordid>eNpdkb1PwzAQxS0EEqUws0awMBA4f9YeEeJLQmIBMVqOcwGXxCmxO4S_npR2YronvZ-e7u4RckrhilKmrpMPGD1euapSnMIemVEwsjQM-D6ZAXBValjIQ3KU0hJg8gyfkfebIoY89B8YXcKyDV9YYPwZOyzSmDJ2hXfZteMPpqLD_Bn6GCJeFpMcW9woF-s_x0UsqrAJwhTSMTloXJvwZDfn5O3-7vX2sXx-eXi6vXkuveAqlwYbI8GLqjLMIePeC6ahkkKLBQXKJNW-5tzXTaMM40zCovGq0kxXUHMj-ZycbXP7lIOdfpDRf_o-RvTZUiU1E2aCLrbQaui_15iy7ULy2LbTzv06WSa4VporCRN6_g9d9ushTif8UUDFQtOJut5SfuhTGrCxqyF0bhgtBbtpw-7asLs2-C9LeH7u</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438014781</pqid></control><display><type>article</type><title>A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis</title><source>American Association for the Advancement of Science</source><creator>North, Justin A. ; Narrowe, Adrienne B. ; Xiong, Weili ; Byerly, Kathryn M. ; Zhao, Guanqi ; Young, Sarah J. ; Murali, Srividya ; Wildenthal, John A. ; Cannon, William R. ; Wrighton, Kelly C. ; Hettich, Robert L. ; Tabita, F. Robert</creator><creatorcontrib>North, Justin A. ; Narrowe, Adrienne B. ; Xiong, Weili ; Byerly, Kathryn M. ; Zhao, Guanqi ; Young, Sarah J. ; Murali, Srividya ; Wildenthal, John A. ; Cannon, William R. ; Wrighton, Kelly C. ; Hettich, Robert L. ; Tabita, F. Robert ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><description>Soil bacteria have a range of metabolic pathways that contribute to acquiring and recycling nutrients and carbon. Curiously, some of these organisms give off ethylene gas when starved for sulfur under anaerobic conditions. North et al. traced the source of ethylene to a small, sulfur-containing organic molecule produced by certain reactions in cells. Growing cells in sulfur-limiting conditions enabled them to identify the enzymes involved in sulfur salvage, and the concomitant ethylene production, through this pathway. Methane and ethane were also observed as products when appropriate substrates were provided. The key genes involved are distantly related to nitrogenase and several other reductase enzymes found in bacteria and archaea. The involvement of such nitrogenase-like genes in sulfur metabolism highlights the potential of unexplored diversity in this family of enzymes and raises many mechanistic and evolutionary questions that are now ripe for exploration. Science , this issue p. 1094 Bacterial reductases release hydrocarbons from ubiquitous volatile organic sulfur compounds to assimilate sulfur. Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C–S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb6310</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>10 SYNTHETIC FUELS ; Anaerobic conditions ; Archaea ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; Biosynthesis ; Dimethyl sulfide ; ENVIRONMENTAL SCIENCES ; Enzymes ; Ethane ; Ethanol ; Ethylene ; Genes ; Metabolic pathways ; Metabolism ; Methane ; Methanethiol ; Methanogenesis ; Methionine ; Nitrogenase ; Nutrients ; Organic chemistry ; Organosulfur compounds ; Reductases ; soil ; Soil bacteria ; Soil microorganisms ; Soils ; Substrates ; Sulfur ; Sulfur compounds ; Terrestrial environments</subject><ispartof>Science (American Association for the Advancement of Science), 2020-08, Vol.369 (6507), p.1094-1098</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-9ef950c4bb92ae23cc4280b548471012518cd33cdff69232507fc6b828b0d3953</citedby><cites>FETCH-LOGICAL-c436t-9ef950c4bb92ae23cc4280b548471012518cd33cdff69232507fc6b828b0d3953</cites><orcidid>0000-0001-5268-7164 ; 0000-0001-7338-447X ; 0000-0001-7708-786X ; 0000-0002-4210-5463 ; 0000-0001-7208-917X ; 0000-0003-0434-4217 ; 0000-0002-5887-0370 ; 0000-0001-9894-4496 ; 0000-0001-7364-7882 ; 0000-0003-3789-7889 ; 0000-0002-2000-088X ; 0000-0001-9343-4788 ; 000000022000088X ; 000000017708786X ; 0000000258870370 ; 0000000304344217 ; 0000000242105463 ; 000000017338447X ; 0000000337897889 ; 0000000173647882 ; 0000000152687164 ; 000000017208917X ; 0000000198944496 ; 0000000193434788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1658249$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>North, Justin A.</creatorcontrib><creatorcontrib>Narrowe, Adrienne B.</creatorcontrib><creatorcontrib>Xiong, Weili</creatorcontrib><creatorcontrib>Byerly, Kathryn M.</creatorcontrib><creatorcontrib>Zhao, Guanqi</creatorcontrib><creatorcontrib>Young, Sarah J.</creatorcontrib><creatorcontrib>Murali, Srividya</creatorcontrib><creatorcontrib>Wildenthal, John A.</creatorcontrib><creatorcontrib>Cannon, William R.</creatorcontrib><creatorcontrib>Wrighton, Kelly C.</creatorcontrib><creatorcontrib>Hettich, Robert L.</creatorcontrib><creatorcontrib>Tabita, F. Robert</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><title>A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis</title><title>Science (American Association for the Advancement of Science)</title><description>Soil bacteria have a range of metabolic pathways that contribute to acquiring and recycling nutrients and carbon. Curiously, some of these organisms give off ethylene gas when starved for sulfur under anaerobic conditions. North et al. traced the source of ethylene to a small, sulfur-containing organic molecule produced by certain reactions in cells. Growing cells in sulfur-limiting conditions enabled them to identify the enzymes involved in sulfur salvage, and the concomitant ethylene production, through this pathway. Methane and ethane were also observed as products when appropriate substrates were provided. The key genes involved are distantly related to nitrogenase and several other reductase enzymes found in bacteria and archaea. The involvement of such nitrogenase-like genes in sulfur metabolism highlights the potential of unexplored diversity in this family of enzymes and raises many mechanistic and evolutionary questions that are now ripe for exploration. Science , this issue p. 1094 Bacterial reductases release hydrocarbons from ubiquitous volatile organic sulfur compounds to assimilate sulfur. Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C–S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.</description><subject>10 SYNTHETIC FUELS</subject><subject>Anaerobic conditions</subject><subject>Archaea</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biosynthesis</subject><subject>Dimethyl sulfide</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Enzymes</subject><subject>Ethane</subject><subject>Ethanol</subject><subject>Ethylene</subject><subject>Genes</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Methane</subject><subject>Methanethiol</subject><subject>Methanogenesis</subject><subject>Methionine</subject><subject>Nitrogenase</subject><subject>Nutrients</subject><subject>Organic chemistry</subject><subject>Organosulfur compounds</subject><subject>Reductases</subject><subject>soil</subject><subject>Soil bacteria</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Substrates</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><subject>Terrestrial environments</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkb1PwzAQxS0EEqUws0awMBA4f9YeEeJLQmIBMVqOcwGXxCmxO4S_npR2YronvZ-e7u4RckrhilKmrpMPGD1euapSnMIemVEwsjQM-D6ZAXBValjIQ3KU0hJg8gyfkfebIoY89B8YXcKyDV9YYPwZOyzSmDJ2hXfZteMPpqLD_Bn6GCJeFpMcW9woF-s_x0UsqrAJwhTSMTloXJvwZDfn5O3-7vX2sXx-eXi6vXkuveAqlwYbI8GLqjLMIePeC6ahkkKLBQXKJNW-5tzXTaMM40zCovGq0kxXUHMj-ZycbXP7lIOdfpDRf_o-RvTZUiU1E2aCLrbQaui_15iy7ULy2LbTzv06WSa4VporCRN6_g9d9ushTif8UUDFQtOJut5SfuhTGrCxqyF0bhgtBbtpw-7asLs2-C9LeH7u</recordid><startdate>20200828</startdate><enddate>20200828</enddate><creator>North, Justin A.</creator><creator>Narrowe, Adrienne B.</creator><creator>Xiong, Weili</creator><creator>Byerly, Kathryn M.</creator><creator>Zhao, Guanqi</creator><creator>Young, Sarah J.</creator><creator>Murali, Srividya</creator><creator>Wildenthal, John A.</creator><creator>Cannon, William R.</creator><creator>Wrighton, Kelly C.</creator><creator>Hettich, Robert L.</creator><creator>Tabita, F. Robert</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5268-7164</orcidid><orcidid>https://orcid.org/0000-0001-7338-447X</orcidid><orcidid>https://orcid.org/0000-0001-7708-786X</orcidid><orcidid>https://orcid.org/0000-0002-4210-5463</orcidid><orcidid>https://orcid.org/0000-0001-7208-917X</orcidid><orcidid>https://orcid.org/0000-0003-0434-4217</orcidid><orcidid>https://orcid.org/0000-0002-5887-0370</orcidid><orcidid>https://orcid.org/0000-0001-9894-4496</orcidid><orcidid>https://orcid.org/0000-0001-7364-7882</orcidid><orcidid>https://orcid.org/0000-0003-3789-7889</orcidid><orcidid>https://orcid.org/0000-0002-2000-088X</orcidid><orcidid>https://orcid.org/0000-0001-9343-4788</orcidid><orcidid>https://orcid.org/000000022000088X</orcidid><orcidid>https://orcid.org/000000017708786X</orcidid><orcidid>https://orcid.org/0000000258870370</orcidid><orcidid>https://orcid.org/0000000304344217</orcidid><orcidid>https://orcid.org/0000000242105463</orcidid><orcidid>https://orcid.org/000000017338447X</orcidid><orcidid>https://orcid.org/0000000337897889</orcidid><orcidid>https://orcid.org/0000000173647882</orcidid><orcidid>https://orcid.org/0000000152687164</orcidid><orcidid>https://orcid.org/000000017208917X</orcidid><orcidid>https://orcid.org/0000000198944496</orcidid><orcidid>https://orcid.org/0000000193434788</orcidid></search><sort><creationdate>20200828</creationdate><title>A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis</title><author>North, Justin A. ; Narrowe, Adrienne B. ; Xiong, Weili ; Byerly, Kathryn M. ; Zhao, Guanqi ; Young, Sarah J. ; Murali, Srividya ; Wildenthal, John A. ; Cannon, William R. ; Wrighton, Kelly C. ; Hettich, Robert L. ; Tabita, F. Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-9ef950c4bb92ae23cc4280b548471012518cd33cdff69232507fc6b828b0d3953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>10 SYNTHETIC FUELS</topic><topic>Anaerobic conditions</topic><topic>Archaea</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biosynthesis</topic><topic>Dimethyl sulfide</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Enzymes</topic><topic>Ethane</topic><topic>Ethanol</topic><topic>Ethylene</topic><topic>Genes</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Methane</topic><topic>Methanethiol</topic><topic>Methanogenesis</topic><topic>Methionine</topic><topic>Nitrogenase</topic><topic>Nutrients</topic><topic>Organic chemistry</topic><topic>Organosulfur compounds</topic><topic>Reductases</topic><topic>soil</topic><topic>Soil bacteria</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Substrates</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>North, Justin A.</creatorcontrib><creatorcontrib>Narrowe, Adrienne B.</creatorcontrib><creatorcontrib>Xiong, Weili</creatorcontrib><creatorcontrib>Byerly, Kathryn M.</creatorcontrib><creatorcontrib>Zhao, Guanqi</creatorcontrib><creatorcontrib>Young, Sarah J.</creatorcontrib><creatorcontrib>Murali, Srividya</creatorcontrib><creatorcontrib>Wildenthal, John A.</creatorcontrib><creatorcontrib>Cannon, William R.</creatorcontrib><creatorcontrib>Wrighton, Kelly C.</creatorcontrib><creatorcontrib>Hettich, Robert L.</creatorcontrib><creatorcontrib>Tabita, F. Robert</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>North, Justin A.</au><au>Narrowe, Adrienne B.</au><au>Xiong, Weili</au><au>Byerly, Kathryn M.</au><au>Zhao, Guanqi</au><au>Young, Sarah J.</au><au>Murali, Srividya</au><au>Wildenthal, John A.</au><au>Cannon, William R.</au><au>Wrighton, Kelly C.</au><au>Hettich, Robert L.</au><au>Tabita, F. Robert</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>The Ohio State Univ., Columbus, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-08-28</date><risdate>2020</risdate><volume>369</volume><issue>6507</issue><spage>1094</spage><epage>1098</epage><pages>1094-1098</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>Soil bacteria have a range of metabolic pathways that contribute to acquiring and recycling nutrients and carbon. Curiously, some of these organisms give off ethylene gas when starved for sulfur under anaerobic conditions. North et al. traced the source of ethylene to a small, sulfur-containing organic molecule produced by certain reactions in cells. Growing cells in sulfur-limiting conditions enabled them to identify the enzymes involved in sulfur salvage, and the concomitant ethylene production, through this pathway. Methane and ethane were also observed as products when appropriate substrates were provided. The key genes involved are distantly related to nitrogenase and several other reductase enzymes found in bacteria and archaea. The involvement of such nitrogenase-like genes in sulfur metabolism highlights the potential of unexplored diversity in this family of enzymes and raises many mechanistic and evolutionary questions that are now ripe for exploration. Science , this issue p. 1094 Bacterial reductases release hydrocarbons from ubiquitous volatile organic sulfur compounds to assimilate sulfur. Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C–S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abb6310</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5268-7164</orcidid><orcidid>https://orcid.org/0000-0001-7338-447X</orcidid><orcidid>https://orcid.org/0000-0001-7708-786X</orcidid><orcidid>https://orcid.org/0000-0002-4210-5463</orcidid><orcidid>https://orcid.org/0000-0001-7208-917X</orcidid><orcidid>https://orcid.org/0000-0003-0434-4217</orcidid><orcidid>https://orcid.org/0000-0002-5887-0370</orcidid><orcidid>https://orcid.org/0000-0001-9894-4496</orcidid><orcidid>https://orcid.org/0000-0001-7364-7882</orcidid><orcidid>https://orcid.org/0000-0003-3789-7889</orcidid><orcidid>https://orcid.org/0000-0002-2000-088X</orcidid><orcidid>https://orcid.org/0000-0001-9343-4788</orcidid><orcidid>https://orcid.org/000000022000088X</orcidid><orcidid>https://orcid.org/000000017708786X</orcidid><orcidid>https://orcid.org/0000000258870370</orcidid><orcidid>https://orcid.org/0000000304344217</orcidid><orcidid>https://orcid.org/0000000242105463</orcidid><orcidid>https://orcid.org/000000017338447X</orcidid><orcidid>https://orcid.org/0000000337897889</orcidid><orcidid>https://orcid.org/0000000173647882</orcidid><orcidid>https://orcid.org/0000000152687164</orcidid><orcidid>https://orcid.org/000000017208917X</orcidid><orcidid>https://orcid.org/0000000198944496</orcidid><orcidid>https://orcid.org/0000000193434788</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2020-08, Vol.369 (6507), p.1094-1098
issn 0036-8075
1095-9203
1095-9203
language eng
recordid cdi_osti_scitechconnect_1658249
source American Association for the Advancement of Science
subjects 10 SYNTHETIC FUELS
Anaerobic conditions
Archaea
Bacteria
BASIC BIOLOGICAL SCIENCES
Biosynthesis
Dimethyl sulfide
ENVIRONMENTAL SCIENCES
Enzymes
Ethane
Ethanol
Ethylene
Genes
Metabolic pathways
Metabolism
Methane
Methanethiol
Methanogenesis
Methionine
Nitrogenase
Nutrients
Organic chemistry
Organosulfur compounds
Reductases
soil
Soil bacteria
Soil microorganisms
Soils
Substrates
Sulfur
Sulfur compounds
Terrestrial environments
title A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nitrogenase-like%20enzyme%20system%20catalyzes%20methionine,%20ethylene,%20and%20methane%20biogenesis&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=North,%20Justin%20A.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-08-28&rft.volume=369&rft.issue=6507&rft.spage=1094&rft.epage=1098&rft.pages=1094-1098&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb6310&rft_dat=%3Cproquest_osti_%3E2438683650%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438014781&rft_id=info:pmid/&rfr_iscdi=true