A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis
Soil bacteria have a range of metabolic pathways that contribute to acquiring and recycling nutrients and carbon. Curiously, some of these organisms give off ethylene gas when starved for sulfur under anaerobic conditions. North et al. traced the source of ethylene to a small, sulfur-containing orga...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-08, Vol.369 (6507), p.1094-1098 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1098 |
---|---|
container_issue | 6507 |
container_start_page | 1094 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 369 |
creator | North, Justin A. Narrowe, Adrienne B. Xiong, Weili Byerly, Kathryn M. Zhao, Guanqi Young, Sarah J. Murali, Srividya Wildenthal, John A. Cannon, William R. Wrighton, Kelly C. Hettich, Robert L. Tabita, F. Robert |
description | Soil bacteria have a range of metabolic pathways that contribute to acquiring and recycling nutrients and carbon. Curiously, some of these organisms give off ethylene gas when starved for sulfur under anaerobic conditions. North
et al.
traced the source of ethylene to a small, sulfur-containing organic molecule produced by certain reactions in cells. Growing cells in sulfur-limiting conditions enabled them to identify the enzymes involved in sulfur salvage, and the concomitant ethylene production, through this pathway. Methane and ethane were also observed as products when appropriate substrates were provided. The key genes involved are distantly related to nitrogenase and several other reductase enzymes found in bacteria and archaea. The involvement of such nitrogenase-like genes in sulfur metabolism highlights the potential of unexplored diversity in this family of enzymes and raises many mechanistic and evolutionary questions that are now ripe for exploration.
Science
, this issue p.
1094
Bacterial reductases release hydrocarbons from ubiquitous volatile organic sulfur compounds to assimilate sulfur.
Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C–S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis. |
doi_str_mv | 10.1126/science.abb6310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1658249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438683650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-9ef950c4bb92ae23cc4280b548471012518cd33cdff69232507fc6b828b0d3953</originalsourceid><addsrcrecordid>eNpdkb1PwzAQxS0EEqUws0awMBA4f9YeEeJLQmIBMVqOcwGXxCmxO4S_npR2YronvZ-e7u4RckrhilKmrpMPGD1euapSnMIemVEwsjQM-D6ZAXBValjIQ3KU0hJg8gyfkfebIoY89B8YXcKyDV9YYPwZOyzSmDJ2hXfZteMPpqLD_Bn6GCJeFpMcW9woF-s_x0UsqrAJwhTSMTloXJvwZDfn5O3-7vX2sXx-eXi6vXkuveAqlwYbI8GLqjLMIePeC6ahkkKLBQXKJNW-5tzXTaMM40zCovGq0kxXUHMj-ZycbXP7lIOdfpDRf_o-RvTZUiU1E2aCLrbQaui_15iy7ULy2LbTzv06WSa4VporCRN6_g9d9ushTif8UUDFQtOJut5SfuhTGrCxqyF0bhgtBbtpw-7asLs2-C9LeH7u</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438014781</pqid></control><display><type>article</type><title>A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis</title><source>American Association for the Advancement of Science</source><creator>North, Justin A. ; Narrowe, Adrienne B. ; Xiong, Weili ; Byerly, Kathryn M. ; Zhao, Guanqi ; Young, Sarah J. ; Murali, Srividya ; Wildenthal, John A. ; Cannon, William R. ; Wrighton, Kelly C. ; Hettich, Robert L. ; Tabita, F. Robert</creator><creatorcontrib>North, Justin A. ; Narrowe, Adrienne B. ; Xiong, Weili ; Byerly, Kathryn M. ; Zhao, Guanqi ; Young, Sarah J. ; Murali, Srividya ; Wildenthal, John A. ; Cannon, William R. ; Wrighton, Kelly C. ; Hettich, Robert L. ; Tabita, F. Robert ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><description>Soil bacteria have a range of metabolic pathways that contribute to acquiring and recycling nutrients and carbon. Curiously, some of these organisms give off ethylene gas when starved for sulfur under anaerobic conditions. North
et al.
traced the source of ethylene to a small, sulfur-containing organic molecule produced by certain reactions in cells. Growing cells in sulfur-limiting conditions enabled them to identify the enzymes involved in sulfur salvage, and the concomitant ethylene production, through this pathway. Methane and ethane were also observed as products when appropriate substrates were provided. The key genes involved are distantly related to nitrogenase and several other reductase enzymes found in bacteria and archaea. The involvement of such nitrogenase-like genes in sulfur metabolism highlights the potential of unexplored diversity in this family of enzymes and raises many mechanistic and evolutionary questions that are now ripe for exploration.
Science
, this issue p.
1094
Bacterial reductases release hydrocarbons from ubiquitous volatile organic sulfur compounds to assimilate sulfur.
Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C–S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abb6310</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>10 SYNTHETIC FUELS ; Anaerobic conditions ; Archaea ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; Biosynthesis ; Dimethyl sulfide ; ENVIRONMENTAL SCIENCES ; Enzymes ; Ethane ; Ethanol ; Ethylene ; Genes ; Metabolic pathways ; Metabolism ; Methane ; Methanethiol ; Methanogenesis ; Methionine ; Nitrogenase ; Nutrients ; Organic chemistry ; Organosulfur compounds ; Reductases ; soil ; Soil bacteria ; Soil microorganisms ; Soils ; Substrates ; Sulfur ; Sulfur compounds ; Terrestrial environments</subject><ispartof>Science (American Association for the Advancement of Science), 2020-08, Vol.369 (6507), p.1094-1098</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-9ef950c4bb92ae23cc4280b548471012518cd33cdff69232507fc6b828b0d3953</citedby><cites>FETCH-LOGICAL-c436t-9ef950c4bb92ae23cc4280b548471012518cd33cdff69232507fc6b828b0d3953</cites><orcidid>0000-0001-5268-7164 ; 0000-0001-7338-447X ; 0000-0001-7708-786X ; 0000-0002-4210-5463 ; 0000-0001-7208-917X ; 0000-0003-0434-4217 ; 0000-0002-5887-0370 ; 0000-0001-9894-4496 ; 0000-0001-7364-7882 ; 0000-0003-3789-7889 ; 0000-0002-2000-088X ; 0000-0001-9343-4788 ; 000000022000088X ; 000000017708786X ; 0000000258870370 ; 0000000304344217 ; 0000000242105463 ; 000000017338447X ; 0000000337897889 ; 0000000173647882 ; 0000000152687164 ; 000000017208917X ; 0000000198944496 ; 0000000193434788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1658249$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>North, Justin A.</creatorcontrib><creatorcontrib>Narrowe, Adrienne B.</creatorcontrib><creatorcontrib>Xiong, Weili</creatorcontrib><creatorcontrib>Byerly, Kathryn M.</creatorcontrib><creatorcontrib>Zhao, Guanqi</creatorcontrib><creatorcontrib>Young, Sarah J.</creatorcontrib><creatorcontrib>Murali, Srividya</creatorcontrib><creatorcontrib>Wildenthal, John A.</creatorcontrib><creatorcontrib>Cannon, William R.</creatorcontrib><creatorcontrib>Wrighton, Kelly C.</creatorcontrib><creatorcontrib>Hettich, Robert L.</creatorcontrib><creatorcontrib>Tabita, F. Robert</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><title>A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis</title><title>Science (American Association for the Advancement of Science)</title><description>Soil bacteria have a range of metabolic pathways that contribute to acquiring and recycling nutrients and carbon. Curiously, some of these organisms give off ethylene gas when starved for sulfur under anaerobic conditions. North
et al.
traced the source of ethylene to a small, sulfur-containing organic molecule produced by certain reactions in cells. Growing cells in sulfur-limiting conditions enabled them to identify the enzymes involved in sulfur salvage, and the concomitant ethylene production, through this pathway. Methane and ethane were also observed as products when appropriate substrates were provided. The key genes involved are distantly related to nitrogenase and several other reductase enzymes found in bacteria and archaea. The involvement of such nitrogenase-like genes in sulfur metabolism highlights the potential of unexplored diversity in this family of enzymes and raises many mechanistic and evolutionary questions that are now ripe for exploration.
Science
, this issue p.
1094
Bacterial reductases release hydrocarbons from ubiquitous volatile organic sulfur compounds to assimilate sulfur.
Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C–S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.</description><subject>10 SYNTHETIC FUELS</subject><subject>Anaerobic conditions</subject><subject>Archaea</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biosynthesis</subject><subject>Dimethyl sulfide</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Enzymes</subject><subject>Ethane</subject><subject>Ethanol</subject><subject>Ethylene</subject><subject>Genes</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Methane</subject><subject>Methanethiol</subject><subject>Methanogenesis</subject><subject>Methionine</subject><subject>Nitrogenase</subject><subject>Nutrients</subject><subject>Organic chemistry</subject><subject>Organosulfur compounds</subject><subject>Reductases</subject><subject>soil</subject><subject>Soil bacteria</subject><subject>Soil microorganisms</subject><subject>Soils</subject><subject>Substrates</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><subject>Terrestrial environments</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkb1PwzAQxS0EEqUws0awMBA4f9YeEeJLQmIBMVqOcwGXxCmxO4S_npR2YronvZ-e7u4RckrhilKmrpMPGD1euapSnMIemVEwsjQM-D6ZAXBValjIQ3KU0hJg8gyfkfebIoY89B8YXcKyDV9YYPwZOyzSmDJ2hXfZteMPpqLD_Bn6GCJeFpMcW9woF-s_x0UsqrAJwhTSMTloXJvwZDfn5O3-7vX2sXx-eXi6vXkuveAqlwYbI8GLqjLMIePeC6ahkkKLBQXKJNW-5tzXTaMM40zCovGq0kxXUHMj-ZycbXP7lIOdfpDRf_o-RvTZUiU1E2aCLrbQaui_15iy7ULy2LbTzv06WSa4VporCRN6_g9d9ushTif8UUDFQtOJut5SfuhTGrCxqyF0bhgtBbtpw-7asLs2-C9LeH7u</recordid><startdate>20200828</startdate><enddate>20200828</enddate><creator>North, Justin A.</creator><creator>Narrowe, Adrienne B.</creator><creator>Xiong, Weili</creator><creator>Byerly, Kathryn M.</creator><creator>Zhao, Guanqi</creator><creator>Young, Sarah J.</creator><creator>Murali, Srividya</creator><creator>Wildenthal, John A.</creator><creator>Cannon, William R.</creator><creator>Wrighton, Kelly C.</creator><creator>Hettich, Robert L.</creator><creator>Tabita, F. Robert</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5268-7164</orcidid><orcidid>https://orcid.org/0000-0001-7338-447X</orcidid><orcidid>https://orcid.org/0000-0001-7708-786X</orcidid><orcidid>https://orcid.org/0000-0002-4210-5463</orcidid><orcidid>https://orcid.org/0000-0001-7208-917X</orcidid><orcidid>https://orcid.org/0000-0003-0434-4217</orcidid><orcidid>https://orcid.org/0000-0002-5887-0370</orcidid><orcidid>https://orcid.org/0000-0001-9894-4496</orcidid><orcidid>https://orcid.org/0000-0001-7364-7882</orcidid><orcidid>https://orcid.org/0000-0003-3789-7889</orcidid><orcidid>https://orcid.org/0000-0002-2000-088X</orcidid><orcidid>https://orcid.org/0000-0001-9343-4788</orcidid><orcidid>https://orcid.org/000000022000088X</orcidid><orcidid>https://orcid.org/000000017708786X</orcidid><orcidid>https://orcid.org/0000000258870370</orcidid><orcidid>https://orcid.org/0000000304344217</orcidid><orcidid>https://orcid.org/0000000242105463</orcidid><orcidid>https://orcid.org/000000017338447X</orcidid><orcidid>https://orcid.org/0000000337897889</orcidid><orcidid>https://orcid.org/0000000173647882</orcidid><orcidid>https://orcid.org/0000000152687164</orcidid><orcidid>https://orcid.org/000000017208917X</orcidid><orcidid>https://orcid.org/0000000198944496</orcidid><orcidid>https://orcid.org/0000000193434788</orcidid></search><sort><creationdate>20200828</creationdate><title>A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis</title><author>North, Justin A. ; Narrowe, Adrienne B. ; Xiong, Weili ; Byerly, Kathryn M. ; Zhao, Guanqi ; Young, Sarah J. ; Murali, Srividya ; Wildenthal, John A. ; Cannon, William R. ; Wrighton, Kelly C. ; Hettich, Robert L. ; Tabita, F. Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-9ef950c4bb92ae23cc4280b548471012518cd33cdff69232507fc6b828b0d3953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>10 SYNTHETIC FUELS</topic><topic>Anaerobic conditions</topic><topic>Archaea</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biosynthesis</topic><topic>Dimethyl sulfide</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Enzymes</topic><topic>Ethane</topic><topic>Ethanol</topic><topic>Ethylene</topic><topic>Genes</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Methane</topic><topic>Methanethiol</topic><topic>Methanogenesis</topic><topic>Methionine</topic><topic>Nitrogenase</topic><topic>Nutrients</topic><topic>Organic chemistry</topic><topic>Organosulfur compounds</topic><topic>Reductases</topic><topic>soil</topic><topic>Soil bacteria</topic><topic>Soil microorganisms</topic><topic>Soils</topic><topic>Substrates</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>North, Justin A.</creatorcontrib><creatorcontrib>Narrowe, Adrienne B.</creatorcontrib><creatorcontrib>Xiong, Weili</creatorcontrib><creatorcontrib>Byerly, Kathryn M.</creatorcontrib><creatorcontrib>Zhao, Guanqi</creatorcontrib><creatorcontrib>Young, Sarah J.</creatorcontrib><creatorcontrib>Murali, Srividya</creatorcontrib><creatorcontrib>Wildenthal, John A.</creatorcontrib><creatorcontrib>Cannon, William R.</creatorcontrib><creatorcontrib>Wrighton, Kelly C.</creatorcontrib><creatorcontrib>Hettich, Robert L.</creatorcontrib><creatorcontrib>Tabita, F. Robert</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>North, Justin A.</au><au>Narrowe, Adrienne B.</au><au>Xiong, Weili</au><au>Byerly, Kathryn M.</au><au>Zhao, Guanqi</au><au>Young, Sarah J.</au><au>Murali, Srividya</au><au>Wildenthal, John A.</au><au>Cannon, William R.</au><au>Wrighton, Kelly C.</au><au>Hettich, Robert L.</au><au>Tabita, F. Robert</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>The Ohio State Univ., Columbus, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-08-28</date><risdate>2020</risdate><volume>369</volume><issue>6507</issue><spage>1094</spage><epage>1098</epage><pages>1094-1098</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>Soil bacteria have a range of metabolic pathways that contribute to acquiring and recycling nutrients and carbon. Curiously, some of these organisms give off ethylene gas when starved for sulfur under anaerobic conditions. North
et al.
traced the source of ethylene to a small, sulfur-containing organic molecule produced by certain reactions in cells. Growing cells in sulfur-limiting conditions enabled them to identify the enzymes involved in sulfur salvage, and the concomitant ethylene production, through this pathway. Methane and ethane were also observed as products when appropriate substrates were provided. The key genes involved are distantly related to nitrogenase and several other reductase enzymes found in bacteria and archaea. The involvement of such nitrogenase-like genes in sulfur metabolism highlights the potential of unexplored diversity in this family of enzymes and raises many mechanistic and evolutionary questions that are now ripe for exploration.
Science
, this issue p.
1094
Bacterial reductases release hydrocarbons from ubiquitous volatile organic sulfur compounds to assimilate sulfur.
Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C–S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.abb6310</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5268-7164</orcidid><orcidid>https://orcid.org/0000-0001-7338-447X</orcidid><orcidid>https://orcid.org/0000-0001-7708-786X</orcidid><orcidid>https://orcid.org/0000-0002-4210-5463</orcidid><orcidid>https://orcid.org/0000-0001-7208-917X</orcidid><orcidid>https://orcid.org/0000-0003-0434-4217</orcidid><orcidid>https://orcid.org/0000-0002-5887-0370</orcidid><orcidid>https://orcid.org/0000-0001-9894-4496</orcidid><orcidid>https://orcid.org/0000-0001-7364-7882</orcidid><orcidid>https://orcid.org/0000-0003-3789-7889</orcidid><orcidid>https://orcid.org/0000-0002-2000-088X</orcidid><orcidid>https://orcid.org/0000-0001-9343-4788</orcidid><orcidid>https://orcid.org/000000022000088X</orcidid><orcidid>https://orcid.org/000000017708786X</orcidid><orcidid>https://orcid.org/0000000258870370</orcidid><orcidid>https://orcid.org/0000000304344217</orcidid><orcidid>https://orcid.org/0000000242105463</orcidid><orcidid>https://orcid.org/000000017338447X</orcidid><orcidid>https://orcid.org/0000000337897889</orcidid><orcidid>https://orcid.org/0000000173647882</orcidid><orcidid>https://orcid.org/0000000152687164</orcidid><orcidid>https://orcid.org/000000017208917X</orcidid><orcidid>https://orcid.org/0000000198944496</orcidid><orcidid>https://orcid.org/0000000193434788</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-08, Vol.369 (6507), p.1094-1098 |
issn | 0036-8075 1095-9203 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1658249 |
source | American Association for the Advancement of Science |
subjects | 10 SYNTHETIC FUELS Anaerobic conditions Archaea Bacteria BASIC BIOLOGICAL SCIENCES Biosynthesis Dimethyl sulfide ENVIRONMENTAL SCIENCES Enzymes Ethane Ethanol Ethylene Genes Metabolic pathways Metabolism Methane Methanethiol Methanogenesis Methionine Nitrogenase Nutrients Organic chemistry Organosulfur compounds Reductases soil Soil bacteria Soil microorganisms Soils Substrates Sulfur Sulfur compounds Terrestrial environments |
title | A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nitrogenase-like%20enzyme%20system%20catalyzes%20methionine,%20ethylene,%20and%20methane%20biogenesis&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=North,%20Justin%20A.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-08-28&rft.volume=369&rft.issue=6507&rft.spage=1094&rft.epage=1098&rft.pages=1094-1098&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abb6310&rft_dat=%3Cproquest_osti_%3E2438683650%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438014781&rft_id=info:pmid/&rfr_iscdi=true |