Tracking ion intercalation into layered Ti3C2 MXene films across length scales
Enhancing the energy stored and power delivered by layered materials relies strongly on improved understanding of the intricate interplay of electrolyte ions, solvents, and electrode interactions as well as the role of confinement. Here we report a highly integrated study with multiscale theory/mode...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2020-01, Vol.13 (8), p.2549-2558 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2558 |
---|---|
container_issue | 8 |
container_start_page | 2549 |
container_title | Energy & environmental science |
container_volume | 13 |
creator | Gao, Qiang Sun, Weiwei Ilani-Kashkouli, Poorandokht Tselev, Alexander Kent, Paul R C Kabengi, Nadine Naguib, Michael Alhabeb, Mohamed Wan-Yu, Tsai Baddorf, Arthur P Huang, Jingsong Jesse, Stephen Gogotsi, Yury Balke, Nina |
description | Enhancing the energy stored and power delivered by layered materials relies strongly on improved understanding of the intricate interplay of electrolyte ions, solvents, and electrode interactions as well as the role of confinement. Here we report a highly integrated study with multiscale theory/modelling and experiments to track the intercalation of aqueous Li+, Na+, K+, Cs+, and Mg2+ ions into Ti3C2 MXene. The integrated analysis of experiments assisted by theory/modelling allows for a deep understanding of energy storage processes highlighting the importance of the dynamics of cations, their positionings between MXene sheets, their effects on mechanical properties and capacitive energy storage. Computational simulations and operando calorimetry measurements prove the processes involving cation dehydration and H+ rehydration, showing a good correlation for heat variations between experiments and theory. Operando liquid AFM mapped energy dissipation of ions appears non-uniformly across the MXene surface, indicating heterogeneities of ions inside the MXene and confirming partially the ion behaviour obtained in theory. We directly demonstrate that the average distance between the cation and MXene surface follows a modified two-sided Helmholtz model when plotted versus the open circuit potential capacitance, revealing a different electrical double layer mechanism in confinement. This new fundamental understanding lays the foundation for improved functional devices utilizing electrodes and membranes made of two-dimensional materials. |
doi_str_mv | 10.1039/d0ee01580f |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1657925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433244712</sourcerecordid><originalsourceid>FETCH-LOGICAL-g177t-150d6d37bcefe0ef6aa92ddaa8e854a8d6ce07424fa5d5265eebef1da9dc2b3d3</originalsourceid><addsrcrecordid>eNo1jk1LAzEYhIMoWKsXf0HQ82q-s3uU4hdUvVTwtrxN3rSpa6Kb9OC_t9B6mhl4ZhhCLjm74Ux2t54hMq5bFo7IhFutGm2ZOf73phOn5KyUDWNGMNtNyOtiBPcZ04rGnGhMFUcHA9RDynSAXxzR00WUM0FfPjAhDXH4KhTcmEuhA6ZVXdOyq2E5JycBhoIXB52S94f7xeypmb89Ps_u5s2KW1sbrpk3Xtqlw4AMgwHohPcALbZaQeuNQ2aVUAG018JoxCUG7qHzTiyll1Nytd_Npca-uFjRrV1OCV3tudG2E3oHXe-h7zH_bLHUfpO3Y9r96oWSUihluZB_ExBc1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433244712</pqid></control><display><type>article</type><title>Tracking ion intercalation into layered Ti3C2 MXene films across length scales</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gao, Qiang ; Sun, Weiwei ; Ilani-Kashkouli, Poorandokht ; Tselev, Alexander ; Kent, Paul R C ; Kabengi, Nadine ; Naguib, Michael ; Alhabeb, Mohamed ; Wan-Yu, Tsai ; Baddorf, Arthur P ; Huang, Jingsong ; Jesse, Stephen ; Gogotsi, Yury ; Balke, Nina</creator><creatorcontrib>Gao, Qiang ; Sun, Weiwei ; Ilani-Kashkouli, Poorandokht ; Tselev, Alexander ; Kent, Paul R C ; Kabengi, Nadine ; Naguib, Michael ; Alhabeb, Mohamed ; Wan-Yu, Tsai ; Baddorf, Arthur P ; Huang, Jingsong ; Jesse, Stephen ; Gogotsi, Yury ; Balke, Nina ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Enhancing the energy stored and power delivered by layered materials relies strongly on improved understanding of the intricate interplay of electrolyte ions, solvents, and electrode interactions as well as the role of confinement. Here we report a highly integrated study with multiscale theory/modelling and experiments to track the intercalation of aqueous Li+, Na+, K+, Cs+, and Mg2+ ions into Ti3C2 MXene. The integrated analysis of experiments assisted by theory/modelling allows for a deep understanding of energy storage processes highlighting the importance of the dynamics of cations, their positionings between MXene sheets, their effects on mechanical properties and capacitive energy storage. Computational simulations and operando calorimetry measurements prove the processes involving cation dehydration and H+ rehydration, showing a good correlation for heat variations between experiments and theory. Operando liquid AFM mapped energy dissipation of ions appears non-uniformly across the MXene surface, indicating heterogeneities of ions inside the MXene and confirming partially the ion behaviour obtained in theory. We directly demonstrate that the average distance between the cation and MXene surface follows a modified two-sided Helmholtz model when plotted versus the open circuit potential capacitance, revealing a different electrical double layer mechanism in confinement. This new fundamental understanding lays the foundation for improved functional devices utilizing electrodes and membranes made of two-dimensional materials.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d0ee01580f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Calorimetry ; Capacitance ; Cations ; Computer applications ; Computer simulation ; Confinement ; Dehydration ; Electrodes ; Energy dissipation ; Energy storage ; Experiments ; Intercalation ; Ions ; Layered materials ; Magnesium ; MATERIALS SCIENCE ; Mechanical properties ; Multiscale analysis ; MXenes ; Open circuit voltage ; Rehydration ; Two dimensional materials</subject><ispartof>Energy & environmental science, 2020-01, Vol.13 (8), p.2549-2558</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000155394017 ; 0000000211688483 ; 0000000170232382 ; 0000000219010992 ; 0000000189932506 ; 0000000297112089 ; 0000000158655892 ; 0000000208749839 ; 0000000255350660 ; 0000000200986696 ; 0000000247317051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1657925$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Ilani-Kashkouli, Poorandokht</creatorcontrib><creatorcontrib>Tselev, Alexander</creatorcontrib><creatorcontrib>Kent, Paul R C</creatorcontrib><creatorcontrib>Kabengi, Nadine</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><creatorcontrib>Alhabeb, Mohamed</creatorcontrib><creatorcontrib>Wan-Yu, Tsai</creatorcontrib><creatorcontrib>Baddorf, Arthur P</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Jesse, Stephen</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Balke, Nina</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Tracking ion intercalation into layered Ti3C2 MXene films across length scales</title><title>Energy & environmental science</title><description>Enhancing the energy stored and power delivered by layered materials relies strongly on improved understanding of the intricate interplay of electrolyte ions, solvents, and electrode interactions as well as the role of confinement. Here we report a highly integrated study with multiscale theory/modelling and experiments to track the intercalation of aqueous Li+, Na+, K+, Cs+, and Mg2+ ions into Ti3C2 MXene. The integrated analysis of experiments assisted by theory/modelling allows for a deep understanding of energy storage processes highlighting the importance of the dynamics of cations, their positionings between MXene sheets, their effects on mechanical properties and capacitive energy storage. Computational simulations and operando calorimetry measurements prove the processes involving cation dehydration and H+ rehydration, showing a good correlation for heat variations between experiments and theory. Operando liquid AFM mapped energy dissipation of ions appears non-uniformly across the MXene surface, indicating heterogeneities of ions inside the MXene and confirming partially the ion behaviour obtained in theory. We directly demonstrate that the average distance between the cation and MXene surface follows a modified two-sided Helmholtz model when plotted versus the open circuit potential capacitance, revealing a different electrical double layer mechanism in confinement. This new fundamental understanding lays the foundation for improved functional devices utilizing electrodes and membranes made of two-dimensional materials.</description><subject>Calorimetry</subject><subject>Capacitance</subject><subject>Cations</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Confinement</subject><subject>Dehydration</subject><subject>Electrodes</subject><subject>Energy dissipation</subject><subject>Energy storage</subject><subject>Experiments</subject><subject>Intercalation</subject><subject>Ions</subject><subject>Layered materials</subject><subject>Magnesium</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Multiscale analysis</subject><subject>MXenes</subject><subject>Open circuit voltage</subject><subject>Rehydration</subject><subject>Two dimensional materials</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1jk1LAzEYhIMoWKsXf0HQ82q-s3uU4hdUvVTwtrxN3rSpa6Kb9OC_t9B6mhl4ZhhCLjm74Ux2t54hMq5bFo7IhFutGm2ZOf73phOn5KyUDWNGMNtNyOtiBPcZ04rGnGhMFUcHA9RDynSAXxzR00WUM0FfPjAhDXH4KhTcmEuhA6ZVXdOyq2E5JycBhoIXB52S94f7xeypmb89Ps_u5s2KW1sbrpk3Xtqlw4AMgwHohPcALbZaQeuNQ2aVUAG018JoxCUG7qHzTiyll1Nytd_Npca-uFjRrV1OCV3tudG2E3oHXe-h7zH_bLHUfpO3Y9r96oWSUihluZB_ExBc1A</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Gao, Qiang</creator><creator>Sun, Weiwei</creator><creator>Ilani-Kashkouli, Poorandokht</creator><creator>Tselev, Alexander</creator><creator>Kent, Paul R C</creator><creator>Kabengi, Nadine</creator><creator>Naguib, Michael</creator><creator>Alhabeb, Mohamed</creator><creator>Wan-Yu, Tsai</creator><creator>Baddorf, Arthur P</creator><creator>Huang, Jingsong</creator><creator>Jesse, Stephen</creator><creator>Gogotsi, Yury</creator><creator>Balke, Nina</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000155394017</orcidid><orcidid>https://orcid.org/0000000211688483</orcidid><orcidid>https://orcid.org/0000000170232382</orcidid><orcidid>https://orcid.org/0000000219010992</orcidid><orcidid>https://orcid.org/0000000189932506</orcidid><orcidid>https://orcid.org/0000000297112089</orcidid><orcidid>https://orcid.org/0000000158655892</orcidid><orcidid>https://orcid.org/0000000208749839</orcidid><orcidid>https://orcid.org/0000000255350660</orcidid><orcidid>https://orcid.org/0000000200986696</orcidid><orcidid>https://orcid.org/0000000247317051</orcidid></search><sort><creationdate>20200101</creationdate><title>Tracking ion intercalation into layered Ti3C2 MXene films across length scales</title><author>Gao, Qiang ; Sun, Weiwei ; Ilani-Kashkouli, Poorandokht ; Tselev, Alexander ; Kent, Paul R C ; Kabengi, Nadine ; Naguib, Michael ; Alhabeb, Mohamed ; Wan-Yu, Tsai ; Baddorf, Arthur P ; Huang, Jingsong ; Jesse, Stephen ; Gogotsi, Yury ; Balke, Nina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g177t-150d6d37bcefe0ef6aa92ddaa8e854a8d6ce07424fa5d5265eebef1da9dc2b3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calorimetry</topic><topic>Capacitance</topic><topic>Cations</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Confinement</topic><topic>Dehydration</topic><topic>Electrodes</topic><topic>Energy dissipation</topic><topic>Energy storage</topic><topic>Experiments</topic><topic>Intercalation</topic><topic>Ions</topic><topic>Layered materials</topic><topic>Magnesium</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Multiscale analysis</topic><topic>MXenes</topic><topic>Open circuit voltage</topic><topic>Rehydration</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Ilani-Kashkouli, Poorandokht</creatorcontrib><creatorcontrib>Tselev, Alexander</creatorcontrib><creatorcontrib>Kent, Paul R C</creatorcontrib><creatorcontrib>Kabengi, Nadine</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><creatorcontrib>Alhabeb, Mohamed</creatorcontrib><creatorcontrib>Wan-Yu, Tsai</creatorcontrib><creatorcontrib>Baddorf, Arthur P</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Jesse, Stephen</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Balke, Nina</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Qiang</au><au>Sun, Weiwei</au><au>Ilani-Kashkouli, Poorandokht</au><au>Tselev, Alexander</au><au>Kent, Paul R C</au><au>Kabengi, Nadine</au><au>Naguib, Michael</au><au>Alhabeb, Mohamed</au><au>Wan-Yu, Tsai</au><au>Baddorf, Arthur P</au><au>Huang, Jingsong</au><au>Jesse, Stephen</au><au>Gogotsi, Yury</au><au>Balke, Nina</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking ion intercalation into layered Ti3C2 MXene films across length scales</atitle><jtitle>Energy & environmental science</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>13</volume><issue>8</issue><spage>2549</spage><epage>2558</epage><pages>2549-2558</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Enhancing the energy stored and power delivered by layered materials relies strongly on improved understanding of the intricate interplay of electrolyte ions, solvents, and electrode interactions as well as the role of confinement. Here we report a highly integrated study with multiscale theory/modelling and experiments to track the intercalation of aqueous Li+, Na+, K+, Cs+, and Mg2+ ions into Ti3C2 MXene. The integrated analysis of experiments assisted by theory/modelling allows for a deep understanding of energy storage processes highlighting the importance of the dynamics of cations, their positionings between MXene sheets, their effects on mechanical properties and capacitive energy storage. Computational simulations and operando calorimetry measurements prove the processes involving cation dehydration and H+ rehydration, showing a good correlation for heat variations between experiments and theory. Operando liquid AFM mapped energy dissipation of ions appears non-uniformly across the MXene surface, indicating heterogeneities of ions inside the MXene and confirming partially the ion behaviour obtained in theory. We directly demonstrate that the average distance between the cation and MXene surface follows a modified two-sided Helmholtz model when plotted versus the open circuit potential capacitance, revealing a different electrical double layer mechanism in confinement. This new fundamental understanding lays the foundation for improved functional devices utilizing electrodes and membranes made of two-dimensional materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ee01580f</doi><tpages>10</tpages><orcidid>https://orcid.org/0000000155394017</orcidid><orcidid>https://orcid.org/0000000211688483</orcidid><orcidid>https://orcid.org/0000000170232382</orcidid><orcidid>https://orcid.org/0000000219010992</orcidid><orcidid>https://orcid.org/0000000189932506</orcidid><orcidid>https://orcid.org/0000000297112089</orcidid><orcidid>https://orcid.org/0000000158655892</orcidid><orcidid>https://orcid.org/0000000208749839</orcidid><orcidid>https://orcid.org/0000000255350660</orcidid><orcidid>https://orcid.org/0000000200986696</orcidid><orcidid>https://orcid.org/0000000247317051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2020-01, Vol.13 (8), p.2549-2558 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_osti_scitechconnect_1657925 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Calorimetry Capacitance Cations Computer applications Computer simulation Confinement Dehydration Electrodes Energy dissipation Energy storage Experiments Intercalation Ions Layered materials Magnesium MATERIALS SCIENCE Mechanical properties Multiscale analysis MXenes Open circuit voltage Rehydration Two dimensional materials |
title | Tracking ion intercalation into layered Ti3C2 MXene films across length scales |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20ion%20intercalation%20into%20layered%20Ti3C2%20MXene%20films%20across%20length%20scales&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Gao,%20Qiang&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-01-01&rft.volume=13&rft.issue=8&rft.spage=2549&rft.epage=2558&rft.pages=2549-2558&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d0ee01580f&rft_dat=%3Cproquest_osti_%3E2433244712%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2433244712&rft_id=info:pmid/&rfr_iscdi=true |