Tracking ion intercalation into layered Ti3C2 MXene films across length scales

Enhancing the energy stored and power delivered by layered materials relies strongly on improved understanding of the intricate interplay of electrolyte ions, solvents, and electrode interactions as well as the role of confinement. Here we report a highly integrated study with multiscale theory/mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2020-01, Vol.13 (8), p.2549-2558
Hauptverfasser: Gao, Qiang, Sun, Weiwei, Ilani-Kashkouli, Poorandokht, Tselev, Alexander, Kent, Paul R C, Kabengi, Nadine, Naguib, Michael, Alhabeb, Mohamed, Wan-Yu, Tsai, Baddorf, Arthur P, Huang, Jingsong, Jesse, Stephen, Gogotsi, Yury, Balke, Nina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2558
container_issue 8
container_start_page 2549
container_title Energy & environmental science
container_volume 13
creator Gao, Qiang
Sun, Weiwei
Ilani-Kashkouli, Poorandokht
Tselev, Alexander
Kent, Paul R C
Kabengi, Nadine
Naguib, Michael
Alhabeb, Mohamed
Wan-Yu, Tsai
Baddorf, Arthur P
Huang, Jingsong
Jesse, Stephen
Gogotsi, Yury
Balke, Nina
description Enhancing the energy stored and power delivered by layered materials relies strongly on improved understanding of the intricate interplay of electrolyte ions, solvents, and electrode interactions as well as the role of confinement. Here we report a highly integrated study with multiscale theory/modelling and experiments to track the intercalation of aqueous Li+, Na+, K+, Cs+, and Mg2+ ions into Ti3C2 MXene. The integrated analysis of experiments assisted by theory/modelling allows for a deep understanding of energy storage processes highlighting the importance of the dynamics of cations, their positionings between MXene sheets, their effects on mechanical properties and capacitive energy storage. Computational simulations and operando calorimetry measurements prove the processes involving cation dehydration and H+ rehydration, showing a good correlation for heat variations between experiments and theory. Operando liquid AFM mapped energy dissipation of ions appears non-uniformly across the MXene surface, indicating heterogeneities of ions inside the MXene and confirming partially the ion behaviour obtained in theory. We directly demonstrate that the average distance between the cation and MXene surface follows a modified two-sided Helmholtz model when plotted versus the open circuit potential capacitance, revealing a different electrical double layer mechanism in confinement. This new fundamental understanding lays the foundation for improved functional devices utilizing electrodes and membranes made of two-dimensional materials.
doi_str_mv 10.1039/d0ee01580f
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1657925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433244712</sourcerecordid><originalsourceid>FETCH-LOGICAL-g177t-150d6d37bcefe0ef6aa92ddaa8e854a8d6ce07424fa5d5265eebef1da9dc2b3d3</originalsourceid><addsrcrecordid>eNo1jk1LAzEYhIMoWKsXf0HQ82q-s3uU4hdUvVTwtrxN3rSpa6Kb9OC_t9B6mhl4ZhhCLjm74Ux2t54hMq5bFo7IhFutGm2ZOf73phOn5KyUDWNGMNtNyOtiBPcZ04rGnGhMFUcHA9RDynSAXxzR00WUM0FfPjAhDXH4KhTcmEuhA6ZVXdOyq2E5JycBhoIXB52S94f7xeypmb89Ps_u5s2KW1sbrpk3Xtqlw4AMgwHohPcALbZaQeuNQ2aVUAG018JoxCUG7qHzTiyll1Nytd_Npca-uFjRrV1OCV3tudG2E3oHXe-h7zH_bLHUfpO3Y9r96oWSUihluZB_ExBc1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2433244712</pqid></control><display><type>article</type><title>Tracking ion intercalation into layered Ti3C2 MXene films across length scales</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gao, Qiang ; Sun, Weiwei ; Ilani-Kashkouli, Poorandokht ; Tselev, Alexander ; Kent, Paul R C ; Kabengi, Nadine ; Naguib, Michael ; Alhabeb, Mohamed ; Wan-Yu, Tsai ; Baddorf, Arthur P ; Huang, Jingsong ; Jesse, Stephen ; Gogotsi, Yury ; Balke, Nina</creator><creatorcontrib>Gao, Qiang ; Sun, Weiwei ; Ilani-Kashkouli, Poorandokht ; Tselev, Alexander ; Kent, Paul R C ; Kabengi, Nadine ; Naguib, Michael ; Alhabeb, Mohamed ; Wan-Yu, Tsai ; Baddorf, Arthur P ; Huang, Jingsong ; Jesse, Stephen ; Gogotsi, Yury ; Balke, Nina ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Enhancing the energy stored and power delivered by layered materials relies strongly on improved understanding of the intricate interplay of electrolyte ions, solvents, and electrode interactions as well as the role of confinement. Here we report a highly integrated study with multiscale theory/modelling and experiments to track the intercalation of aqueous Li+, Na+, K+, Cs+, and Mg2+ ions into Ti3C2 MXene. The integrated analysis of experiments assisted by theory/modelling allows for a deep understanding of energy storage processes highlighting the importance of the dynamics of cations, their positionings between MXene sheets, their effects on mechanical properties and capacitive energy storage. Computational simulations and operando calorimetry measurements prove the processes involving cation dehydration and H+ rehydration, showing a good correlation for heat variations between experiments and theory. Operando liquid AFM mapped energy dissipation of ions appears non-uniformly across the MXene surface, indicating heterogeneities of ions inside the MXene and confirming partially the ion behaviour obtained in theory. We directly demonstrate that the average distance between the cation and MXene surface follows a modified two-sided Helmholtz model when plotted versus the open circuit potential capacitance, revealing a different electrical double layer mechanism in confinement. This new fundamental understanding lays the foundation for improved functional devices utilizing electrodes and membranes made of two-dimensional materials.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d0ee01580f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Calorimetry ; Capacitance ; Cations ; Computer applications ; Computer simulation ; Confinement ; Dehydration ; Electrodes ; Energy dissipation ; Energy storage ; Experiments ; Intercalation ; Ions ; Layered materials ; Magnesium ; MATERIALS SCIENCE ; Mechanical properties ; Multiscale analysis ; MXenes ; Open circuit voltage ; Rehydration ; Two dimensional materials</subject><ispartof>Energy &amp; environmental science, 2020-01, Vol.13 (8), p.2549-2558</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000155394017 ; 0000000211688483 ; 0000000170232382 ; 0000000219010992 ; 0000000189932506 ; 0000000297112089 ; 0000000158655892 ; 0000000208749839 ; 0000000255350660 ; 0000000200986696 ; 0000000247317051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1657925$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Ilani-Kashkouli, Poorandokht</creatorcontrib><creatorcontrib>Tselev, Alexander</creatorcontrib><creatorcontrib>Kent, Paul R C</creatorcontrib><creatorcontrib>Kabengi, Nadine</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><creatorcontrib>Alhabeb, Mohamed</creatorcontrib><creatorcontrib>Wan-Yu, Tsai</creatorcontrib><creatorcontrib>Baddorf, Arthur P</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Jesse, Stephen</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Balke, Nina</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Tracking ion intercalation into layered Ti3C2 MXene films across length scales</title><title>Energy &amp; environmental science</title><description>Enhancing the energy stored and power delivered by layered materials relies strongly on improved understanding of the intricate interplay of electrolyte ions, solvents, and electrode interactions as well as the role of confinement. Here we report a highly integrated study with multiscale theory/modelling and experiments to track the intercalation of aqueous Li+, Na+, K+, Cs+, and Mg2+ ions into Ti3C2 MXene. The integrated analysis of experiments assisted by theory/modelling allows for a deep understanding of energy storage processes highlighting the importance of the dynamics of cations, their positionings between MXene sheets, their effects on mechanical properties and capacitive energy storage. Computational simulations and operando calorimetry measurements prove the processes involving cation dehydration and H+ rehydration, showing a good correlation for heat variations between experiments and theory. Operando liquid AFM mapped energy dissipation of ions appears non-uniformly across the MXene surface, indicating heterogeneities of ions inside the MXene and confirming partially the ion behaviour obtained in theory. We directly demonstrate that the average distance between the cation and MXene surface follows a modified two-sided Helmholtz model when plotted versus the open circuit potential capacitance, revealing a different electrical double layer mechanism in confinement. This new fundamental understanding lays the foundation for improved functional devices utilizing electrodes and membranes made of two-dimensional materials.</description><subject>Calorimetry</subject><subject>Capacitance</subject><subject>Cations</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Confinement</subject><subject>Dehydration</subject><subject>Electrodes</subject><subject>Energy dissipation</subject><subject>Energy storage</subject><subject>Experiments</subject><subject>Intercalation</subject><subject>Ions</subject><subject>Layered materials</subject><subject>Magnesium</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Multiscale analysis</subject><subject>MXenes</subject><subject>Open circuit voltage</subject><subject>Rehydration</subject><subject>Two dimensional materials</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1jk1LAzEYhIMoWKsXf0HQ82q-s3uU4hdUvVTwtrxN3rSpa6Kb9OC_t9B6mhl4ZhhCLjm74Ux2t54hMq5bFo7IhFutGm2ZOf73phOn5KyUDWNGMNtNyOtiBPcZ04rGnGhMFUcHA9RDynSAXxzR00WUM0FfPjAhDXH4KhTcmEuhA6ZVXdOyq2E5JycBhoIXB52S94f7xeypmb89Ps_u5s2KW1sbrpk3Xtqlw4AMgwHohPcALbZaQeuNQ2aVUAG018JoxCUG7qHzTiyll1Nytd_Npca-uFjRrV1OCV3tudG2E3oHXe-h7zH_bLHUfpO3Y9r96oWSUihluZB_ExBc1A</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Gao, Qiang</creator><creator>Sun, Weiwei</creator><creator>Ilani-Kashkouli, Poorandokht</creator><creator>Tselev, Alexander</creator><creator>Kent, Paul R C</creator><creator>Kabengi, Nadine</creator><creator>Naguib, Michael</creator><creator>Alhabeb, Mohamed</creator><creator>Wan-Yu, Tsai</creator><creator>Baddorf, Arthur P</creator><creator>Huang, Jingsong</creator><creator>Jesse, Stephen</creator><creator>Gogotsi, Yury</creator><creator>Balke, Nina</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000155394017</orcidid><orcidid>https://orcid.org/0000000211688483</orcidid><orcidid>https://orcid.org/0000000170232382</orcidid><orcidid>https://orcid.org/0000000219010992</orcidid><orcidid>https://orcid.org/0000000189932506</orcidid><orcidid>https://orcid.org/0000000297112089</orcidid><orcidid>https://orcid.org/0000000158655892</orcidid><orcidid>https://orcid.org/0000000208749839</orcidid><orcidid>https://orcid.org/0000000255350660</orcidid><orcidid>https://orcid.org/0000000200986696</orcidid><orcidid>https://orcid.org/0000000247317051</orcidid></search><sort><creationdate>20200101</creationdate><title>Tracking ion intercalation into layered Ti3C2 MXene films across length scales</title><author>Gao, Qiang ; Sun, Weiwei ; Ilani-Kashkouli, Poorandokht ; Tselev, Alexander ; Kent, Paul R C ; Kabengi, Nadine ; Naguib, Michael ; Alhabeb, Mohamed ; Wan-Yu, Tsai ; Baddorf, Arthur P ; Huang, Jingsong ; Jesse, Stephen ; Gogotsi, Yury ; Balke, Nina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g177t-150d6d37bcefe0ef6aa92ddaa8e854a8d6ce07424fa5d5265eebef1da9dc2b3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calorimetry</topic><topic>Capacitance</topic><topic>Cations</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Confinement</topic><topic>Dehydration</topic><topic>Electrodes</topic><topic>Energy dissipation</topic><topic>Energy storage</topic><topic>Experiments</topic><topic>Intercalation</topic><topic>Ions</topic><topic>Layered materials</topic><topic>Magnesium</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Multiscale analysis</topic><topic>MXenes</topic><topic>Open circuit voltage</topic><topic>Rehydration</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Ilani-Kashkouli, Poorandokht</creatorcontrib><creatorcontrib>Tselev, Alexander</creatorcontrib><creatorcontrib>Kent, Paul R C</creatorcontrib><creatorcontrib>Kabengi, Nadine</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><creatorcontrib>Alhabeb, Mohamed</creatorcontrib><creatorcontrib>Wan-Yu, Tsai</creatorcontrib><creatorcontrib>Baddorf, Arthur P</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Jesse, Stephen</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Balke, Nina</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Qiang</au><au>Sun, Weiwei</au><au>Ilani-Kashkouli, Poorandokht</au><au>Tselev, Alexander</au><au>Kent, Paul R C</au><au>Kabengi, Nadine</au><au>Naguib, Michael</au><au>Alhabeb, Mohamed</au><au>Wan-Yu, Tsai</au><au>Baddorf, Arthur P</au><au>Huang, Jingsong</au><au>Jesse, Stephen</au><au>Gogotsi, Yury</au><au>Balke, Nina</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking ion intercalation into layered Ti3C2 MXene films across length scales</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>13</volume><issue>8</issue><spage>2549</spage><epage>2558</epage><pages>2549-2558</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Enhancing the energy stored and power delivered by layered materials relies strongly on improved understanding of the intricate interplay of electrolyte ions, solvents, and electrode interactions as well as the role of confinement. Here we report a highly integrated study with multiscale theory/modelling and experiments to track the intercalation of aqueous Li+, Na+, K+, Cs+, and Mg2+ ions into Ti3C2 MXene. The integrated analysis of experiments assisted by theory/modelling allows for a deep understanding of energy storage processes highlighting the importance of the dynamics of cations, their positionings between MXene sheets, their effects on mechanical properties and capacitive energy storage. Computational simulations and operando calorimetry measurements prove the processes involving cation dehydration and H+ rehydration, showing a good correlation for heat variations between experiments and theory. Operando liquid AFM mapped energy dissipation of ions appears non-uniformly across the MXene surface, indicating heterogeneities of ions inside the MXene and confirming partially the ion behaviour obtained in theory. We directly demonstrate that the average distance between the cation and MXene surface follows a modified two-sided Helmholtz model when plotted versus the open circuit potential capacitance, revealing a different electrical double layer mechanism in confinement. This new fundamental understanding lays the foundation for improved functional devices utilizing electrodes and membranes made of two-dimensional materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ee01580f</doi><tpages>10</tpages><orcidid>https://orcid.org/0000000155394017</orcidid><orcidid>https://orcid.org/0000000211688483</orcidid><orcidid>https://orcid.org/0000000170232382</orcidid><orcidid>https://orcid.org/0000000219010992</orcidid><orcidid>https://orcid.org/0000000189932506</orcidid><orcidid>https://orcid.org/0000000297112089</orcidid><orcidid>https://orcid.org/0000000158655892</orcidid><orcidid>https://orcid.org/0000000208749839</orcidid><orcidid>https://orcid.org/0000000255350660</orcidid><orcidid>https://orcid.org/0000000200986696</orcidid><orcidid>https://orcid.org/0000000247317051</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2020-01, Vol.13 (8), p.2549-2558
issn 1754-5692
1754-5706
language eng
recordid cdi_osti_scitechconnect_1657925
source Royal Society Of Chemistry Journals 2008-
subjects Calorimetry
Capacitance
Cations
Computer applications
Computer simulation
Confinement
Dehydration
Electrodes
Energy dissipation
Energy storage
Experiments
Intercalation
Ions
Layered materials
Magnesium
MATERIALS SCIENCE
Mechanical properties
Multiscale analysis
MXenes
Open circuit voltage
Rehydration
Two dimensional materials
title Tracking ion intercalation into layered Ti3C2 MXene films across length scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20ion%20intercalation%20into%20layered%20Ti3C2%20MXene%20films%20across%20length%20scales&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Gao,%20Qiang&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-01-01&rft.volume=13&rft.issue=8&rft.spage=2549&rft.epage=2558&rft.pages=2549-2558&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d0ee01580f&rft_dat=%3Cproquest_osti_%3E2433244712%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2433244712&rft_id=info:pmid/&rfr_iscdi=true