Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation

Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2020-10, Vol.59 (44), p.19592-19601
Hauptverfasser: Zhou, Yunwen, Thirumalai, Hari, Smith, Scott K., Whitmire, Kenton H., Liu, Jing, Frenkel, Anatoly I., Grabow, Lars C., Rimer, Jeffrey D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19601
container_issue 44
container_start_page 19592
container_title Angewandte Chemie (International ed.)
container_volume 59
creator Zhou, Yunwen
Thirumalai, Hari
Smith, Scott K.
Whitmire, Kenton H.
Liu, Jing
Frenkel, Anatoly I.
Grabow, Lars C.
Rimer, Jeffrey D.
description Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. We compare three distinct methods of preparing Ga‐ZSM‐5 and reveal direct (single step) synthesis leads to optimal catalysts compared to post‐synthesis methods. Using a combination of state‐of‐the‐art characterization, catalyst testing, and density functional theory calculations, we show that Ga Lewis acid sites strongly favor aromatization. Our findings also suggest Ga(framework)–Ga(extra‐framework) pairings, which can only be achieved in materials prepared by direct synthesis, are the most energetically favorable sites for reaction pathways leading to aromatics. Calculated acid site exchange energies between extra‐framework Ga at framework sites comprised of either Al or Ga reveal a site‐specific preference for stabilizing Lewis acids, which is qualitatively consistent with experimental measurements. These findings indicate the possibility of tailoring Lewis acid siting by the placement of Ga heteroatoms at distinct tetrahedral sites in the zeolite framework, which can have a marked impact on catalyst performance relative to conventional H‐ZSM‐5. Direct synthesis of Ga‐ZSM‐5 catalysts leads to dramatic enhancement in the production of aromatics from ethylene compared to post‐synthesis preparation methods. Combined experiments and modeling reveal an energetic preference for Ga extra‐framework sites to associate with select framework sites, suggesting the possibility of tailoring Lewis acid siting in zeolites by controlled heteroatom substitution in framework tetrahedral sites.
doi_str_mv 10.1002/anie.202007147
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1657464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451817908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5207-9849519a52c208cca343c5acc039d46fb33b3c994c9b40b61d85ca896ba3afe83</originalsourceid><addsrcrecordid>eNqF0U1vFCEYB_BJU5O-6NUzsRcvs8IAA3hrtmttUmti9eKFMs8yWRp2WIHRjCc_gp_RTyLrNDbx4oGXw-__EPKvqucELwjGzSszOLtocIOxIEwcVMeEN6SmQtDDcmeU1kJyclSdpHRfvJS4Pa7uVnkzeTtYdGE30zoGE8PWZPe9rDCg8NVGdGl-_fj5-fZd2Tlammz8lHJ6jW5MHqNFZlijD8FbFPpCvXfjFt3uLLg_I55WT3rjk332cJ5Wn96sPi7f1tfvL6-W59c18AaLWkmmOFGGN9BgCWAoo8ANAKZqzdq-o7SjoBQD1THctWQtORip2s5Q01tJT6sX89yQstMJXLawgTAMFrImLResZQW9nNEuhi-jTVlvXQLrvRlsGJNuGMVUqJme_UPvwxiH8oWiOJFEKLx_dTEriCGlaHu9i25r4qQJ1vtW9L4V_beVElBz4JvzdvqP1uc3V6vH7G9b3pGe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451817908</pqid></control><display><type>article</type><title>Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation</title><source>Wiley Online Library All Journals</source><creator>Zhou, Yunwen ; Thirumalai, Hari ; Smith, Scott K. ; Whitmire, Kenton H. ; Liu, Jing ; Frenkel, Anatoly I. ; Grabow, Lars C. ; Rimer, Jeffrey D.</creator><creatorcontrib>Zhou, Yunwen ; Thirumalai, Hari ; Smith, Scott K. ; Whitmire, Kenton H. ; Liu, Jing ; Frenkel, Anatoly I. ; Grabow, Lars C. ; Rimer, Jeffrey D. ; Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) ; Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) ; Stony Brook Univ., NY (United States)</creatorcontrib><description>Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. We compare three distinct methods of preparing Ga‐ZSM‐5 and reveal direct (single step) synthesis leads to optimal catalysts compared to post‐synthesis methods. Using a combination of state‐of‐the‐art characterization, catalyst testing, and density functional theory calculations, we show that Ga Lewis acid sites strongly favor aromatization. Our findings also suggest Ga(framework)–Ga(extra‐framework) pairings, which can only be achieved in materials prepared by direct synthesis, are the most energetically favorable sites for reaction pathways leading to aromatics. Calculated acid site exchange energies between extra‐framework Ga at framework sites comprised of either Al or Ga reveal a site‐specific preference for stabilizing Lewis acids, which is qualitatively consistent with experimental measurements. These findings indicate the possibility of tailoring Lewis acid siting by the placement of Ga heteroatoms at distinct tetrahedral sites in the zeolite framework, which can have a marked impact on catalyst performance relative to conventional H‐ZSM‐5. Direct synthesis of Ga‐ZSM‐5 catalysts leads to dramatic enhancement in the production of aromatics from ethylene compared to post‐synthesis preparation methods. Combined experiments and modeling reveal an energetic preference for Ga extra‐framework sites to associate with select framework sites, suggesting the possibility of tailoring Lewis acid siting in zeolites by controlled heteroatom substitution in framework tetrahedral sites.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202007147</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>acid siting ; Acids ; Aromatic compounds ; aromatics ; bifunctional catalysis ; Catalysis ; Catalysts ; Chemical synthesis ; Density functional theory ; Gallium ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Lewis acid ; Mathematical analysis ; Selectivity ; Speciation ; zeolite synthesis ; Zeolites</subject><ispartof>Angewandte Chemie (International ed.), 2020-10, Vol.59 (44), p.19592-19601</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5207-9849519a52c208cca343c5acc039d46fb33b3c994c9b40b61d85ca896ba3afe83</citedby><cites>FETCH-LOGICAL-c5207-9849519a52c208cca343c5acc039d46fb33b3c994c9b40b61d85ca896ba3afe83</cites><orcidid>0000-0001-7362-535X ; 0000-0002-5451-1207 ; 0000-0002-2296-3428 ; 0000-0002-9993-1088 ; 0000-0003-3932-7599 ; 0000-0002-7766-8856 ; 000000017362535X ; 0000000222963428 ; 0000000299931088 ; 0000000254511207 ; 0000000277668856 ; 0000000339327599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202007147$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202007147$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1657464$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yunwen</creatorcontrib><creatorcontrib>Thirumalai, Hari</creatorcontrib><creatorcontrib>Smith, Scott K.</creatorcontrib><creatorcontrib>Whitmire, Kenton H.</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Frenkel, Anatoly I.</creatorcontrib><creatorcontrib>Grabow, Lars C.</creatorcontrib><creatorcontrib>Rimer, Jeffrey D.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Stony Brook Univ., NY (United States)</creatorcontrib><title>Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation</title><title>Angewandte Chemie (International ed.)</title><description>Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. We compare three distinct methods of preparing Ga‐ZSM‐5 and reveal direct (single step) synthesis leads to optimal catalysts compared to post‐synthesis methods. Using a combination of state‐of‐the‐art characterization, catalyst testing, and density functional theory calculations, we show that Ga Lewis acid sites strongly favor aromatization. Our findings also suggest Ga(framework)–Ga(extra‐framework) pairings, which can only be achieved in materials prepared by direct synthesis, are the most energetically favorable sites for reaction pathways leading to aromatics. Calculated acid site exchange energies between extra‐framework Ga at framework sites comprised of either Al or Ga reveal a site‐specific preference for stabilizing Lewis acids, which is qualitatively consistent with experimental measurements. These findings indicate the possibility of tailoring Lewis acid siting by the placement of Ga heteroatoms at distinct tetrahedral sites in the zeolite framework, which can have a marked impact on catalyst performance relative to conventional H‐ZSM‐5. Direct synthesis of Ga‐ZSM‐5 catalysts leads to dramatic enhancement in the production of aromatics from ethylene compared to post‐synthesis preparation methods. Combined experiments and modeling reveal an energetic preference for Ga extra‐framework sites to associate with select framework sites, suggesting the possibility of tailoring Lewis acid siting in zeolites by controlled heteroatom substitution in framework tetrahedral sites.</description><subject>acid siting</subject><subject>Acids</subject><subject>Aromatic compounds</subject><subject>aromatics</subject><subject>bifunctional catalysis</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Density functional theory</subject><subject>Gallium</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Lewis acid</subject><subject>Mathematical analysis</subject><subject>Selectivity</subject><subject>Speciation</subject><subject>zeolite synthesis</subject><subject>Zeolites</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0U1vFCEYB_BJU5O-6NUzsRcvs8IAA3hrtmttUmti9eKFMs8yWRp2WIHRjCc_gp_RTyLrNDbx4oGXw-__EPKvqucELwjGzSszOLtocIOxIEwcVMeEN6SmQtDDcmeU1kJyclSdpHRfvJS4Pa7uVnkzeTtYdGE30zoGE8PWZPe9rDCg8NVGdGl-_fj5-fZd2Tlammz8lHJ6jW5MHqNFZlijD8FbFPpCvXfjFt3uLLg_I55WT3rjk332cJ5Wn96sPi7f1tfvL6-W59c18AaLWkmmOFGGN9BgCWAoo8ANAKZqzdq-o7SjoBQD1THctWQtORip2s5Q01tJT6sX89yQstMJXLawgTAMFrImLResZQW9nNEuhi-jTVlvXQLrvRlsGJNuGMVUqJme_UPvwxiH8oWiOJFEKLx_dTEriCGlaHu9i25r4qQJ1vtW9L4V_beVElBz4JvzdvqP1uc3V6vH7G9b3pGe</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Zhou, Yunwen</creator><creator>Thirumalai, Hari</creator><creator>Smith, Scott K.</creator><creator>Whitmire, Kenton H.</creator><creator>Liu, Jing</creator><creator>Frenkel, Anatoly I.</creator><creator>Grabow, Lars C.</creator><creator>Rimer, Jeffrey D.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7362-535X</orcidid><orcidid>https://orcid.org/0000-0002-5451-1207</orcidid><orcidid>https://orcid.org/0000-0002-2296-3428</orcidid><orcidid>https://orcid.org/0000-0002-9993-1088</orcidid><orcidid>https://orcid.org/0000-0003-3932-7599</orcidid><orcidid>https://orcid.org/0000-0002-7766-8856</orcidid><orcidid>https://orcid.org/000000017362535X</orcidid><orcidid>https://orcid.org/0000000222963428</orcidid><orcidid>https://orcid.org/0000000299931088</orcidid><orcidid>https://orcid.org/0000000254511207</orcidid><orcidid>https://orcid.org/0000000277668856</orcidid><orcidid>https://orcid.org/0000000339327599</orcidid></search><sort><creationdate>20201026</creationdate><title>Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation</title><author>Zhou, Yunwen ; Thirumalai, Hari ; Smith, Scott K. ; Whitmire, Kenton H. ; Liu, Jing ; Frenkel, Anatoly I. ; Grabow, Lars C. ; Rimer, Jeffrey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5207-9849519a52c208cca343c5acc039d46fb33b3c994c9b40b61d85ca896ba3afe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acid siting</topic><topic>Acids</topic><topic>Aromatic compounds</topic><topic>aromatics</topic><topic>bifunctional catalysis</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Density functional theory</topic><topic>Gallium</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Lewis acid</topic><topic>Mathematical analysis</topic><topic>Selectivity</topic><topic>Speciation</topic><topic>zeolite synthesis</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yunwen</creatorcontrib><creatorcontrib>Thirumalai, Hari</creatorcontrib><creatorcontrib>Smith, Scott K.</creatorcontrib><creatorcontrib>Whitmire, Kenton H.</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Frenkel, Anatoly I.</creatorcontrib><creatorcontrib>Grabow, Lars C.</creatorcontrib><creatorcontrib>Rimer, Jeffrey D.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Stony Brook Univ., NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yunwen</au><au>Thirumalai, Hari</au><au>Smith, Scott K.</au><au>Whitmire, Kenton H.</au><au>Liu, Jing</au><au>Frenkel, Anatoly I.</au><au>Grabow, Lars C.</au><au>Rimer, Jeffrey D.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><aucorp>Stony Brook Univ., NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><date>2020-10-26</date><risdate>2020</risdate><volume>59</volume><issue>44</issue><spage>19592</spage><epage>19601</epage><pages>19592-19601</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. We compare three distinct methods of preparing Ga‐ZSM‐5 and reveal direct (single step) synthesis leads to optimal catalysts compared to post‐synthesis methods. Using a combination of state‐of‐the‐art characterization, catalyst testing, and density functional theory calculations, we show that Ga Lewis acid sites strongly favor aromatization. Our findings also suggest Ga(framework)–Ga(extra‐framework) pairings, which can only be achieved in materials prepared by direct synthesis, are the most energetically favorable sites for reaction pathways leading to aromatics. Calculated acid site exchange energies between extra‐framework Ga at framework sites comprised of either Al or Ga reveal a site‐specific preference for stabilizing Lewis acids, which is qualitatively consistent with experimental measurements. These findings indicate the possibility of tailoring Lewis acid siting by the placement of Ga heteroatoms at distinct tetrahedral sites in the zeolite framework, which can have a marked impact on catalyst performance relative to conventional H‐ZSM‐5. Direct synthesis of Ga‐ZSM‐5 catalysts leads to dramatic enhancement in the production of aromatics from ethylene compared to post‐synthesis preparation methods. Combined experiments and modeling reveal an energetic preference for Ga extra‐framework sites to associate with select framework sites, suggesting the possibility of tailoring Lewis acid siting in zeolites by controlled heteroatom substitution in framework tetrahedral sites.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202007147</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-7362-535X</orcidid><orcidid>https://orcid.org/0000-0002-5451-1207</orcidid><orcidid>https://orcid.org/0000-0002-2296-3428</orcidid><orcidid>https://orcid.org/0000-0002-9993-1088</orcidid><orcidid>https://orcid.org/0000-0003-3932-7599</orcidid><orcidid>https://orcid.org/0000-0002-7766-8856</orcidid><orcidid>https://orcid.org/000000017362535X</orcidid><orcidid>https://orcid.org/0000000222963428</orcidid><orcidid>https://orcid.org/0000000299931088</orcidid><orcidid>https://orcid.org/0000000254511207</orcidid><orcidid>https://orcid.org/0000000277668856</orcidid><orcidid>https://orcid.org/0000000339327599</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2020-10, Vol.59 (44), p.19592-19601
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1657464
source Wiley Online Library All Journals
subjects acid siting
Acids
Aromatic compounds
aromatics
bifunctional catalysis
Catalysis
Catalysts
Chemical synthesis
Density functional theory
Gallium
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Lewis acid
Mathematical analysis
Selectivity
Speciation
zeolite synthesis
Zeolites
title Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethylene%20Dehydroaromatization%20over%20Ga%E2%80%90ZSM%E2%80%905%20Catalysts:%20Nature%20and%20Role%20of%20Gallium%20Speciation&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Zhou,%20Yunwen&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Catalysis%20Center%20for%20Energy%20Innovation%20(CCEI)&rft.date=2020-10-26&rft.volume=59&rft.issue=44&rft.spage=19592&rft.epage=19601&rft.pages=19592-19601&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202007147&rft_dat=%3Cproquest_osti_%3E2451817908%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451817908&rft_id=info:pmid/&rfr_iscdi=true