Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation
Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. W...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2020-10, Vol.59 (44), p.19592-19601 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19601 |
---|---|
container_issue | 44 |
container_start_page | 19592 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 59 |
creator | Zhou, Yunwen Thirumalai, Hari Smith, Scott K. Whitmire, Kenton H. Liu, Jing Frenkel, Anatoly I. Grabow, Lars C. Rimer, Jeffrey D. |
description | Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. We compare three distinct methods of preparing Ga‐ZSM‐5 and reveal direct (single step) synthesis leads to optimal catalysts compared to post‐synthesis methods. Using a combination of state‐of‐the‐art characterization, catalyst testing, and density functional theory calculations, we show that Ga Lewis acid sites strongly favor aromatization. Our findings also suggest Ga(framework)–Ga(extra‐framework) pairings, which can only be achieved in materials prepared by direct synthesis, are the most energetically favorable sites for reaction pathways leading to aromatics. Calculated acid site exchange energies between extra‐framework Ga at framework sites comprised of either Al or Ga reveal a site‐specific preference for stabilizing Lewis acids, which is qualitatively consistent with experimental measurements. These findings indicate the possibility of tailoring Lewis acid siting by the placement of Ga heteroatoms at distinct tetrahedral sites in the zeolite framework, which can have a marked impact on catalyst performance relative to conventional H‐ZSM‐5.
Direct synthesis of Ga‐ZSM‐5 catalysts leads to dramatic enhancement in the production of aromatics from ethylene compared to post‐synthesis preparation methods. Combined experiments and modeling reveal an energetic preference for Ga extra‐framework sites to associate with select framework sites, suggesting the possibility of tailoring Lewis acid siting in zeolites by controlled heteroatom substitution in framework tetrahedral sites. |
doi_str_mv | 10.1002/anie.202007147 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1657464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451817908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5207-9849519a52c208cca343c5acc039d46fb33b3c994c9b40b61d85ca896ba3afe83</originalsourceid><addsrcrecordid>eNqF0U1vFCEYB_BJU5O-6NUzsRcvs8IAA3hrtmttUmti9eKFMs8yWRp2WIHRjCc_gp_RTyLrNDbx4oGXw-__EPKvqucELwjGzSszOLtocIOxIEwcVMeEN6SmQtDDcmeU1kJyclSdpHRfvJS4Pa7uVnkzeTtYdGE30zoGE8PWZPe9rDCg8NVGdGl-_fj5-fZd2Tlammz8lHJ6jW5MHqNFZlijD8FbFPpCvXfjFt3uLLg_I55WT3rjk332cJ5Wn96sPi7f1tfvL6-W59c18AaLWkmmOFGGN9BgCWAoo8ANAKZqzdq-o7SjoBQD1THctWQtORip2s5Q01tJT6sX89yQstMJXLawgTAMFrImLResZQW9nNEuhi-jTVlvXQLrvRlsGJNuGMVUqJme_UPvwxiH8oWiOJFEKLx_dTEriCGlaHu9i25r4qQJ1vtW9L4V_beVElBz4JvzdvqP1uc3V6vH7G9b3pGe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451817908</pqid></control><display><type>article</type><title>Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation</title><source>Wiley Online Library All Journals</source><creator>Zhou, Yunwen ; Thirumalai, Hari ; Smith, Scott K. ; Whitmire, Kenton H. ; Liu, Jing ; Frenkel, Anatoly I. ; Grabow, Lars C. ; Rimer, Jeffrey D.</creator><creatorcontrib>Zhou, Yunwen ; Thirumalai, Hari ; Smith, Scott K. ; Whitmire, Kenton H. ; Liu, Jing ; Frenkel, Anatoly I. ; Grabow, Lars C. ; Rimer, Jeffrey D. ; Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) ; Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) ; Stony Brook Univ., NY (United States)</creatorcontrib><description>Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. We compare three distinct methods of preparing Ga‐ZSM‐5 and reveal direct (single step) synthesis leads to optimal catalysts compared to post‐synthesis methods. Using a combination of state‐of‐the‐art characterization, catalyst testing, and density functional theory calculations, we show that Ga Lewis acid sites strongly favor aromatization. Our findings also suggest Ga(framework)–Ga(extra‐framework) pairings, which can only be achieved in materials prepared by direct synthesis, are the most energetically favorable sites for reaction pathways leading to aromatics. Calculated acid site exchange energies between extra‐framework Ga at framework sites comprised of either Al or Ga reveal a site‐specific preference for stabilizing Lewis acids, which is qualitatively consistent with experimental measurements. These findings indicate the possibility of tailoring Lewis acid siting by the placement of Ga heteroatoms at distinct tetrahedral sites in the zeolite framework, which can have a marked impact on catalyst performance relative to conventional H‐ZSM‐5.
Direct synthesis of Ga‐ZSM‐5 catalysts leads to dramatic enhancement in the production of aromatics from ethylene compared to post‐synthesis preparation methods. Combined experiments and modeling reveal an energetic preference for Ga extra‐framework sites to associate with select framework sites, suggesting the possibility of tailoring Lewis acid siting in zeolites by controlled heteroatom substitution in framework tetrahedral sites.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202007147</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>acid siting ; Acids ; Aromatic compounds ; aromatics ; bifunctional catalysis ; Catalysis ; Catalysts ; Chemical synthesis ; Density functional theory ; Gallium ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Lewis acid ; Mathematical analysis ; Selectivity ; Speciation ; zeolite synthesis ; Zeolites</subject><ispartof>Angewandte Chemie (International ed.), 2020-10, Vol.59 (44), p.19592-19601</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5207-9849519a52c208cca343c5acc039d46fb33b3c994c9b40b61d85ca896ba3afe83</citedby><cites>FETCH-LOGICAL-c5207-9849519a52c208cca343c5acc039d46fb33b3c994c9b40b61d85ca896ba3afe83</cites><orcidid>0000-0001-7362-535X ; 0000-0002-5451-1207 ; 0000-0002-2296-3428 ; 0000-0002-9993-1088 ; 0000-0003-3932-7599 ; 0000-0002-7766-8856 ; 000000017362535X ; 0000000222963428 ; 0000000299931088 ; 0000000254511207 ; 0000000277668856 ; 0000000339327599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202007147$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202007147$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1657464$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yunwen</creatorcontrib><creatorcontrib>Thirumalai, Hari</creatorcontrib><creatorcontrib>Smith, Scott K.</creatorcontrib><creatorcontrib>Whitmire, Kenton H.</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Frenkel, Anatoly I.</creatorcontrib><creatorcontrib>Grabow, Lars C.</creatorcontrib><creatorcontrib>Rimer, Jeffrey D.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Stony Brook Univ., NY (United States)</creatorcontrib><title>Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation</title><title>Angewandte Chemie (International ed.)</title><description>Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. We compare three distinct methods of preparing Ga‐ZSM‐5 and reveal direct (single step) synthesis leads to optimal catalysts compared to post‐synthesis methods. Using a combination of state‐of‐the‐art characterization, catalyst testing, and density functional theory calculations, we show that Ga Lewis acid sites strongly favor aromatization. Our findings also suggest Ga(framework)–Ga(extra‐framework) pairings, which can only be achieved in materials prepared by direct synthesis, are the most energetically favorable sites for reaction pathways leading to aromatics. Calculated acid site exchange energies between extra‐framework Ga at framework sites comprised of either Al or Ga reveal a site‐specific preference for stabilizing Lewis acids, which is qualitatively consistent with experimental measurements. These findings indicate the possibility of tailoring Lewis acid siting by the placement of Ga heteroatoms at distinct tetrahedral sites in the zeolite framework, which can have a marked impact on catalyst performance relative to conventional H‐ZSM‐5.
Direct synthesis of Ga‐ZSM‐5 catalysts leads to dramatic enhancement in the production of aromatics from ethylene compared to post‐synthesis preparation methods. Combined experiments and modeling reveal an energetic preference for Ga extra‐framework sites to associate with select framework sites, suggesting the possibility of tailoring Lewis acid siting in zeolites by controlled heteroatom substitution in framework tetrahedral sites.</description><subject>acid siting</subject><subject>Acids</subject><subject>Aromatic compounds</subject><subject>aromatics</subject><subject>bifunctional catalysis</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Density functional theory</subject><subject>Gallium</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Lewis acid</subject><subject>Mathematical analysis</subject><subject>Selectivity</subject><subject>Speciation</subject><subject>zeolite synthesis</subject><subject>Zeolites</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0U1vFCEYB_BJU5O-6NUzsRcvs8IAA3hrtmttUmti9eKFMs8yWRp2WIHRjCc_gp_RTyLrNDbx4oGXw-__EPKvqucELwjGzSszOLtocIOxIEwcVMeEN6SmQtDDcmeU1kJyclSdpHRfvJS4Pa7uVnkzeTtYdGE30zoGE8PWZPe9rDCg8NVGdGl-_fj5-fZd2Tlammz8lHJ6jW5MHqNFZlijD8FbFPpCvXfjFt3uLLg_I55WT3rjk332cJ5Wn96sPi7f1tfvL6-W59c18AaLWkmmOFGGN9BgCWAoo8ANAKZqzdq-o7SjoBQD1THctWQtORip2s5Q01tJT6sX89yQstMJXLawgTAMFrImLResZQW9nNEuhi-jTVlvXQLrvRlsGJNuGMVUqJme_UPvwxiH8oWiOJFEKLx_dTEriCGlaHu9i25r4qQJ1vtW9L4V_beVElBz4JvzdvqP1uc3V6vH7G9b3pGe</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Zhou, Yunwen</creator><creator>Thirumalai, Hari</creator><creator>Smith, Scott K.</creator><creator>Whitmire, Kenton H.</creator><creator>Liu, Jing</creator><creator>Frenkel, Anatoly I.</creator><creator>Grabow, Lars C.</creator><creator>Rimer, Jeffrey D.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7362-535X</orcidid><orcidid>https://orcid.org/0000-0002-5451-1207</orcidid><orcidid>https://orcid.org/0000-0002-2296-3428</orcidid><orcidid>https://orcid.org/0000-0002-9993-1088</orcidid><orcidid>https://orcid.org/0000-0003-3932-7599</orcidid><orcidid>https://orcid.org/0000-0002-7766-8856</orcidid><orcidid>https://orcid.org/000000017362535X</orcidid><orcidid>https://orcid.org/0000000222963428</orcidid><orcidid>https://orcid.org/0000000299931088</orcidid><orcidid>https://orcid.org/0000000254511207</orcidid><orcidid>https://orcid.org/0000000277668856</orcidid><orcidid>https://orcid.org/0000000339327599</orcidid></search><sort><creationdate>20201026</creationdate><title>Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation</title><author>Zhou, Yunwen ; Thirumalai, Hari ; Smith, Scott K. ; Whitmire, Kenton H. ; Liu, Jing ; Frenkel, Anatoly I. ; Grabow, Lars C. ; Rimer, Jeffrey D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5207-9849519a52c208cca343c5acc039d46fb33b3c994c9b40b61d85ca896ba3afe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acid siting</topic><topic>Acids</topic><topic>Aromatic compounds</topic><topic>aromatics</topic><topic>bifunctional catalysis</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Density functional theory</topic><topic>Gallium</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Lewis acid</topic><topic>Mathematical analysis</topic><topic>Selectivity</topic><topic>Speciation</topic><topic>zeolite synthesis</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yunwen</creatorcontrib><creatorcontrib>Thirumalai, Hari</creatorcontrib><creatorcontrib>Smith, Scott K.</creatorcontrib><creatorcontrib>Whitmire, Kenton H.</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Frenkel, Anatoly I.</creatorcontrib><creatorcontrib>Grabow, Lars C.</creatorcontrib><creatorcontrib>Rimer, Jeffrey D.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Stony Brook Univ., NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yunwen</au><au>Thirumalai, Hari</au><au>Smith, Scott K.</au><au>Whitmire, Kenton H.</au><au>Liu, Jing</au><au>Frenkel, Anatoly I.</au><au>Grabow, Lars C.</au><au>Rimer, Jeffrey D.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Catalysis Center for Energy Innovation (CCEI)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><aucorp>Stony Brook Univ., NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><date>2020-10-26</date><risdate>2020</risdate><volume>59</volume><issue>44</issue><spage>19592</spage><epage>19601</epage><pages>19592-19601</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Bifunctional catalysis in zeolites possessing both Brønsted and Lewis acid sites offers unique opportunities to tailor shape selectivity and enhance catalyst performance. Here, we examine the impact of framework and extra‐framework gallium species on enriched aromatics production in zeolite ZSM‐5. We compare three distinct methods of preparing Ga‐ZSM‐5 and reveal direct (single step) synthesis leads to optimal catalysts compared to post‐synthesis methods. Using a combination of state‐of‐the‐art characterization, catalyst testing, and density functional theory calculations, we show that Ga Lewis acid sites strongly favor aromatization. Our findings also suggest Ga(framework)–Ga(extra‐framework) pairings, which can only be achieved in materials prepared by direct synthesis, are the most energetically favorable sites for reaction pathways leading to aromatics. Calculated acid site exchange energies between extra‐framework Ga at framework sites comprised of either Al or Ga reveal a site‐specific preference for stabilizing Lewis acids, which is qualitatively consistent with experimental measurements. These findings indicate the possibility of tailoring Lewis acid siting by the placement of Ga heteroatoms at distinct tetrahedral sites in the zeolite framework, which can have a marked impact on catalyst performance relative to conventional H‐ZSM‐5.
Direct synthesis of Ga‐ZSM‐5 catalysts leads to dramatic enhancement in the production of aromatics from ethylene compared to post‐synthesis preparation methods. Combined experiments and modeling reveal an energetic preference for Ga extra‐framework sites to associate with select framework sites, suggesting the possibility of tailoring Lewis acid siting in zeolites by controlled heteroatom substitution in framework tetrahedral sites.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202007147</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-7362-535X</orcidid><orcidid>https://orcid.org/0000-0002-5451-1207</orcidid><orcidid>https://orcid.org/0000-0002-2296-3428</orcidid><orcidid>https://orcid.org/0000-0002-9993-1088</orcidid><orcidid>https://orcid.org/0000-0003-3932-7599</orcidid><orcidid>https://orcid.org/0000-0002-7766-8856</orcidid><orcidid>https://orcid.org/000000017362535X</orcidid><orcidid>https://orcid.org/0000000222963428</orcidid><orcidid>https://orcid.org/0000000299931088</orcidid><orcidid>https://orcid.org/0000000254511207</orcidid><orcidid>https://orcid.org/0000000277668856</orcidid><orcidid>https://orcid.org/0000000339327599</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2020-10, Vol.59 (44), p.19592-19601 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_1657464 |
source | Wiley Online Library All Journals |
subjects | acid siting Acids Aromatic compounds aromatics bifunctional catalysis Catalysis Catalysts Chemical synthesis Density functional theory Gallium INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Lewis acid Mathematical analysis Selectivity Speciation zeolite synthesis Zeolites |
title | Ethylene Dehydroaromatization over Ga‐ZSM‐5 Catalysts: Nature and Role of Gallium Speciation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethylene%20Dehydroaromatization%20over%20Ga%E2%80%90ZSM%E2%80%905%20Catalysts:%20Nature%20and%20Role%20of%20Gallium%20Speciation&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Zhou,%20Yunwen&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Catalysis%20Center%20for%20Energy%20Innovation%20(CCEI)&rft.date=2020-10-26&rft.volume=59&rft.issue=44&rft.spage=19592&rft.epage=19601&rft.pages=19592-19601&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202007147&rft_dat=%3Cproquest_osti_%3E2451817908%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451817908&rft_id=info:pmid/&rfr_iscdi=true |