Prediction of Transition-State Energies of Hydrodeoxygenation Reactions on Transition-Metal Surfaces Based on Machine Learning

Computational catalyst discovery involves identification of a meaningful model and suitable descriptors that determine the catalyst properties. We study the impact of combining various descriptors (e.g., reaction energies, metal descriptors, and bond counts) for modeling transition-state energies (T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-12, Vol.123 (49), p.29804-29810
Hauptverfasser: Abdelfatah, Kareem, Yang, Wenqiang, Vijay Solomon, Rajadurai, Rajbanshi, Biplab, Chowdhury, Asif, Zare, Mehdi, Kundu, Subrata Kumar, Yonge, Adam, Heyden, Andreas, Terejanu, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!