Prediction of Transition-State Energies of Hydrodeoxygenation Reactions on Transition-Metal Surfaces Based on Machine Learning
Computational catalyst discovery involves identification of a meaningful model and suitable descriptors that determine the catalyst properties. We study the impact of combining various descriptors (e.g., reaction energies, metal descriptors, and bond counts) for modeling transition-state energies (T...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2019-12, Vol.123 (49), p.29804-29810 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29810 |
---|---|
container_issue | 49 |
container_start_page | 29804 |
container_title | Journal of physical chemistry. C |
container_volume | 123 |
creator | Abdelfatah, Kareem Yang, Wenqiang Vijay Solomon, Rajadurai Rajbanshi, Biplab Chowdhury, Asif Zare, Mehdi Kundu, Subrata Kumar Yonge, Adam Heyden, Andreas Terejanu, Gabriel |
description | Computational catalyst discovery involves identification of a meaningful model and suitable descriptors that determine the catalyst properties. We study the impact of combining various descriptors (e.g., reaction energies, metal descriptors, and bond counts) for modeling transition-state energies (TS) based on a database of adsorption and TS energies across transition-metal surfaces for the decarboxylation and decarbonylation of propionic acid, a chemistry characteristic for biomass conversion. Results of different machine learning models for more than 1572 descriptor combinations suggest that there is no statistically significant difference between linear and nonlinear models when using the right combination of reactant energies, metal descriptors, and bond counts. However, linear models are inferior when not including bond count and metal descriptors. Furthermore, when there are missing data for reaction steps on all metals, conventional linear scaling is inferior to linear and nonlinear models with proper choice of descriptors that are surprisingly robust. |
doi_str_mv | 10.1021/acs.jpcc.9b10507 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1656918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a425535935</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-b20a337769c2d6f41293ec095c1155c3016a3a354e9e8eceef8f34b20f08b7743</originalsourceid><addsrcrecordid>eNp1kM1PAjEQxRujiYjePW48u9hut_txVKJiAtEInpuhO4USbEm7JHLxb7cLxHjxNDN57zfJe4RcMzpgNGN3oMJgtVFqUM8ZFbQ8IT1W8ywtcyFOf_e8PCcXIawoFZwy3iPfbx4bo1rjbOJ0MvNgg-mudNpCi8mjRb8wGDpxtGu8a9B97RZoYY-8I-zZqNu_8ARbWCfTrdegIvwAAZvOMgG1NBaTMYK3xi4uyZmGdcCr4-yTj6fH2XCUjl-fX4b34xR4VbTpPKPAeVkWtcqaQucsqzkqWgvFmBAqRimAAxc51lihQtSV5nmkNK3mZZnzPrk5_HWhNTIo06JaKmctqlayQhQ1q6KJHkzKuxA8arnx5hP8TjIqu5JlLFl2JctjyRG5PSB7xW29jSn-t_8A4AqCMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of Transition-State Energies of Hydrodeoxygenation Reactions on Transition-Metal Surfaces Based on Machine Learning</title><source>American Chemical Society Journals</source><creator>Abdelfatah, Kareem ; Yang, Wenqiang ; Vijay Solomon, Rajadurai ; Rajbanshi, Biplab ; Chowdhury, Asif ; Zare, Mehdi ; Kundu, Subrata Kumar ; Yonge, Adam ; Heyden, Andreas ; Terejanu, Gabriel</creator><creatorcontrib>Abdelfatah, Kareem ; Yang, Wenqiang ; Vijay Solomon, Rajadurai ; Rajbanshi, Biplab ; Chowdhury, Asif ; Zare, Mehdi ; Kundu, Subrata Kumar ; Yonge, Adam ; Heyden, Andreas ; Terejanu, Gabriel ; Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><description>Computational catalyst discovery involves identification of a meaningful model and suitable descriptors that determine the catalyst properties. We study the impact of combining various descriptors (e.g., reaction energies, metal descriptors, and bond counts) for modeling transition-state energies (TS) based on a database of adsorption and TS energies across transition-metal surfaces for the decarboxylation and decarbonylation of propionic acid, a chemistry characteristic for biomass conversion. Results of different machine learning models for more than 1572 descriptor combinations suggest that there is no statistically significant difference between linear and nonlinear models when using the right combination of reactant energies, metal descriptors, and bond counts. However, linear models are inferior when not including bond count and metal descriptors. Furthermore, when there are missing data for reaction steps on all metals, conventional linear scaling is inferior to linear and nonlinear models with proper choice of descriptors that are surprisingly robust.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.9b10507</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Chemical reactions ; Energy ; Free energy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Metals</subject><ispartof>Journal of physical chemistry. C, 2019-12, Vol.123 (49), p.29804-29810</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-b20a337769c2d6f41293ec095c1155c3016a3a354e9e8eceef8f34b20f08b7743</citedby><cites>FETCH-LOGICAL-a386t-b20a337769c2d6f41293ec095c1155c3016a3a354e9e8eceef8f34b20f08b7743</cites><orcidid>0000-0001-8556-462X ; 0000-0002-4939-7489 ; 000000018556462X ; 0000000249397489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.9b10507$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.9b10507$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1656918$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdelfatah, Kareem</creatorcontrib><creatorcontrib>Yang, Wenqiang</creatorcontrib><creatorcontrib>Vijay Solomon, Rajadurai</creatorcontrib><creatorcontrib>Rajbanshi, Biplab</creatorcontrib><creatorcontrib>Chowdhury, Asif</creatorcontrib><creatorcontrib>Zare, Mehdi</creatorcontrib><creatorcontrib>Kundu, Subrata Kumar</creatorcontrib><creatorcontrib>Yonge, Adam</creatorcontrib><creatorcontrib>Heyden, Andreas</creatorcontrib><creatorcontrib>Terejanu, Gabriel</creatorcontrib><creatorcontrib>Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><title>Prediction of Transition-State Energies of Hydrodeoxygenation Reactions on Transition-Metal Surfaces Based on Machine Learning</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Computational catalyst discovery involves identification of a meaningful model and suitable descriptors that determine the catalyst properties. We study the impact of combining various descriptors (e.g., reaction energies, metal descriptors, and bond counts) for modeling transition-state energies (TS) based on a database of adsorption and TS energies across transition-metal surfaces for the decarboxylation and decarbonylation of propionic acid, a chemistry characteristic for biomass conversion. Results of different machine learning models for more than 1572 descriptor combinations suggest that there is no statistically significant difference between linear and nonlinear models when using the right combination of reactant energies, metal descriptors, and bond counts. However, linear models are inferior when not including bond count and metal descriptors. Furthermore, when there are missing data for reaction steps on all metals, conventional linear scaling is inferior to linear and nonlinear models with proper choice of descriptors that are surprisingly robust.</description><subject>Adsorption</subject><subject>Chemical reactions</subject><subject>Energy</subject><subject>Free energy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Metals</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PAjEQxRujiYjePW48u9hut_txVKJiAtEInpuhO4USbEm7JHLxb7cLxHjxNDN57zfJe4RcMzpgNGN3oMJgtVFqUM8ZFbQ8IT1W8ywtcyFOf_e8PCcXIawoFZwy3iPfbx4bo1rjbOJ0MvNgg-mudNpCi8mjRb8wGDpxtGu8a9B97RZoYY-8I-zZqNu_8ARbWCfTrdegIvwAAZvOMgG1NBaTMYK3xi4uyZmGdcCr4-yTj6fH2XCUjl-fX4b34xR4VbTpPKPAeVkWtcqaQucsqzkqWgvFmBAqRimAAxc51lihQtSV5nmkNK3mZZnzPrk5_HWhNTIo06JaKmctqlayQhQ1q6KJHkzKuxA8arnx5hP8TjIqu5JlLFl2JctjyRG5PSB7xW29jSn-t_8A4AqCMw</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Abdelfatah, Kareem</creator><creator>Yang, Wenqiang</creator><creator>Vijay Solomon, Rajadurai</creator><creator>Rajbanshi, Biplab</creator><creator>Chowdhury, Asif</creator><creator>Zare, Mehdi</creator><creator>Kundu, Subrata Kumar</creator><creator>Yonge, Adam</creator><creator>Heyden, Andreas</creator><creator>Terejanu, Gabriel</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8556-462X</orcidid><orcidid>https://orcid.org/0000-0002-4939-7489</orcidid><orcidid>https://orcid.org/000000018556462X</orcidid><orcidid>https://orcid.org/0000000249397489</orcidid></search><sort><creationdate>20191212</creationdate><title>Prediction of Transition-State Energies of Hydrodeoxygenation Reactions on Transition-Metal Surfaces Based on Machine Learning</title><author>Abdelfatah, Kareem ; Yang, Wenqiang ; Vijay Solomon, Rajadurai ; Rajbanshi, Biplab ; Chowdhury, Asif ; Zare, Mehdi ; Kundu, Subrata Kumar ; Yonge, Adam ; Heyden, Andreas ; Terejanu, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-b20a337769c2d6f41293ec095c1155c3016a3a354e9e8eceef8f34b20f08b7743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Chemical reactions</topic><topic>Energy</topic><topic>Free energy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelfatah, Kareem</creatorcontrib><creatorcontrib>Yang, Wenqiang</creatorcontrib><creatorcontrib>Vijay Solomon, Rajadurai</creatorcontrib><creatorcontrib>Rajbanshi, Biplab</creatorcontrib><creatorcontrib>Chowdhury, Asif</creatorcontrib><creatorcontrib>Zare, Mehdi</creatorcontrib><creatorcontrib>Kundu, Subrata Kumar</creatorcontrib><creatorcontrib>Yonge, Adam</creatorcontrib><creatorcontrib>Heyden, Andreas</creatorcontrib><creatorcontrib>Terejanu, Gabriel</creatorcontrib><creatorcontrib>Univ. of South Carolina, Columbia, SC (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelfatah, Kareem</au><au>Yang, Wenqiang</au><au>Vijay Solomon, Rajadurai</au><au>Rajbanshi, Biplab</au><au>Chowdhury, Asif</au><au>Zare, Mehdi</au><au>Kundu, Subrata Kumar</au><au>Yonge, Adam</au><au>Heyden, Andreas</au><au>Terejanu, Gabriel</au><aucorp>Univ. of South Carolina, Columbia, SC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Transition-State Energies of Hydrodeoxygenation Reactions on Transition-Metal Surfaces Based on Machine Learning</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-12-12</date><risdate>2019</risdate><volume>123</volume><issue>49</issue><spage>29804</spage><epage>29810</epage><pages>29804-29810</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Computational catalyst discovery involves identification of a meaningful model and suitable descriptors that determine the catalyst properties. We study the impact of combining various descriptors (e.g., reaction energies, metal descriptors, and bond counts) for modeling transition-state energies (TS) based on a database of adsorption and TS energies across transition-metal surfaces for the decarboxylation and decarbonylation of propionic acid, a chemistry characteristic for biomass conversion. Results of different machine learning models for more than 1572 descriptor combinations suggest that there is no statistically significant difference between linear and nonlinear models when using the right combination of reactant energies, metal descriptors, and bond counts. However, linear models are inferior when not including bond count and metal descriptors. Furthermore, when there are missing data for reaction steps on all metals, conventional linear scaling is inferior to linear and nonlinear models with proper choice of descriptors that are surprisingly robust.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.9b10507</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8556-462X</orcidid><orcidid>https://orcid.org/0000-0002-4939-7489</orcidid><orcidid>https://orcid.org/000000018556462X</orcidid><orcidid>https://orcid.org/0000000249397489</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2019-12, Vol.123 (49), p.29804-29810 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1656918 |
source | American Chemical Society Journals |
subjects | Adsorption Chemical reactions Energy Free energy INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Metals |
title | Prediction of Transition-State Energies of Hydrodeoxygenation Reactions on Transition-Metal Surfaces Based on Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Transition-State%20Energies%20of%20Hydrodeoxygenation%20Reactions%20on%20Transition-Metal%20Surfaces%20Based%20on%20Machine%20Learning&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Abdelfatah,%20Kareem&rft.aucorp=Univ.%20of%20South%20Carolina,%20Columbia,%20SC%20(United%20States)&rft.date=2019-12-12&rft.volume=123&rft.issue=49&rft.spage=29804&rft.epage=29810&rft.pages=29804-29810&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.9b10507&rft_dat=%3Cacs_osti_%3Ea425535935%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |