On the origin of ground-state vacuum-field catalysis: Equilibrium consideration

Recent experiments suggest that vibrational strong coupling (VSC) may significantly modify ground-state chemical reactions and their rates even without external pumping. The intrinsic mechanism of this “vacuum-field catalysis” remains largely unclear. Generally, modifications of thermal reactions in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-06, Vol.152 (23), p.234107-234107
Hauptverfasser: Li, Tao E., Nitzan, Abraham, Subotnik, Joseph E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234107
container_issue 23
container_start_page 234107
container_title The Journal of chemical physics
container_volume 152
creator Li, Tao E.
Nitzan, Abraham
Subotnik, Joseph E.
description Recent experiments suggest that vibrational strong coupling (VSC) may significantly modify ground-state chemical reactions and their rates even without external pumping. The intrinsic mechanism of this “vacuum-field catalysis” remains largely unclear. Generally, modifications of thermal reactions in the ground electronic states can be caused by equilibrium or non-equilibrium effects. The former are associated with modifications of the reactant equilibrium distribution as expressed by the transition state theory of chemical reaction rates, while the latter stem from the dynamics of reaching and leaving transition state configurations. Here, we examine how VSC can affect chemical reactions rates in a cavity environment according to transition state theory. Our approach is to examine the effect of coupling to cavity mode(s) on the potential of mean force (PMF) associated with the reaction coordinate. Within the context of classical nuclei and classical photons and also assuming no charge overlap between molecules, we find that while the PMF can be affected by the cavity environment, this effect is negligible for the usual micron-length cavities used to examine VSC situations.
doi_str_mv 10.1063/5.0006472
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1656848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2413221794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-1bdd75c658782194f6ab8e7bf60cf722c22e55c96c747e382621076faf72db7f3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pwW9Q9KJCNUnTJPUmY_6BwS56DmmabBltsyXpYN_ezg4FBU_v4f3x8L4PAJcI3iNIs4f8HkJICcNHYIQgL1JGC3gMRhBilBYU0lNwFsKqR4hhMgLzeZvEpU6ctwvbJs4kC--6tkpDlFEnW6m6rkmN1XWVKBllvQs2PCbTTWdrW3rbNYlybbCV9jJa156DEyProC8Ocww-nqfvk9d0Nn95mzzNUkU4jykqq4rliuaccYwKYqgsuWaloVAZhrHCWOe5KqhihOmMY4oRZNTIflmVzGRjcDXkuhCtCMpGrZb9Ja1WUSCaU054j24GtPZu0-kQRWOD0nUtW-26IDBBFNMMkqKn17_oynW-7V_YqwxjxArSq9tBKe9C8NqItbeN9DuBoNj3L3Jx6L-3d4PdH_fVzTfeOv8Dxboy_-G_yZ-CWJIq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413221794</pqid></control><display><type>article</type><title>On the origin of ground-state vacuum-field catalysis: Equilibrium consideration</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Tao E. ; Nitzan, Abraham ; Subotnik, Joseph E.</creator><creatorcontrib>Li, Tao E. ; Nitzan, Abraham ; Subotnik, Joseph E. ; Univ. of Pennsylvania, Philadelphia, PA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Recent experiments suggest that vibrational strong coupling (VSC) may significantly modify ground-state chemical reactions and their rates even without external pumping. The intrinsic mechanism of this “vacuum-field catalysis” remains largely unclear. Generally, modifications of thermal reactions in the ground electronic states can be caused by equilibrium or non-equilibrium effects. The former are associated with modifications of the reactant equilibrium distribution as expressed by the transition state theory of chemical reaction rates, while the latter stem from the dynamics of reaching and leaving transition state configurations. Here, we examine how VSC can affect chemical reactions rates in a cavity environment according to transition state theory. Our approach is to examine the effect of coupling to cavity mode(s) on the potential of mean force (PMF) associated with the reaction coordinate. Within the context of classical nuclei and classical photons and also assuming no charge overlap between molecules, we find that while the PMF can be affected by the cavity environment, this effect is negligible for the usual micron-length cavities used to examine VSC situations.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0006472</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Catalysis ; Catalysts and catalysis ; Chemical reactions ; Coulomb gauge ; Coupling ; Coupling (molecular) ; Dark states ; Electron states ; Electrostatics ; Equilibrium ; Holes ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Intermolecular forces ; Optical resonators ; Photocatalysis and photoelectrochemistry ; Physics ; Potential energy surfaces ; Transition state theory</subject><ispartof>The Journal of chemical physics, 2020-06, Vol.152 (23), p.234107-234107</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-1bdd75c658782194f6ab8e7bf60cf722c22e55c96c747e382621076faf72db7f3</citedby><cites>FETCH-LOGICAL-c488t-1bdd75c658782194f6ab8e7bf60cf722c22e55c96c747e382621076faf72db7f3</cites><orcidid>0000-0003-2170-2020 ; 0000-0003-0361-5687 ; 0000-0002-8431-0967 ; 0000000284310967 ; 0000000303615687 ; 0000000321702020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0006472$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1656848$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tao E.</creatorcontrib><creatorcontrib>Nitzan, Abraham</creatorcontrib><creatorcontrib>Subotnik, Joseph E.</creatorcontrib><creatorcontrib>Univ. of Pennsylvania, Philadelphia, PA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>On the origin of ground-state vacuum-field catalysis: Equilibrium consideration</title><title>The Journal of chemical physics</title><description>Recent experiments suggest that vibrational strong coupling (VSC) may significantly modify ground-state chemical reactions and their rates even without external pumping. The intrinsic mechanism of this “vacuum-field catalysis” remains largely unclear. Generally, modifications of thermal reactions in the ground electronic states can be caused by equilibrium or non-equilibrium effects. The former are associated with modifications of the reactant equilibrium distribution as expressed by the transition state theory of chemical reaction rates, while the latter stem from the dynamics of reaching and leaving transition state configurations. Here, we examine how VSC can affect chemical reactions rates in a cavity environment according to transition state theory. Our approach is to examine the effect of coupling to cavity mode(s) on the potential of mean force (PMF) associated with the reaction coordinate. Within the context of classical nuclei and classical photons and also assuming no charge overlap between molecules, we find that while the PMF can be affected by the cavity environment, this effect is negligible for the usual micron-length cavities used to examine VSC situations.</description><subject>Catalysis</subject><subject>Catalysts and catalysis</subject><subject>Chemical reactions</subject><subject>Coulomb gauge</subject><subject>Coupling</subject><subject>Coupling (molecular)</subject><subject>Dark states</subject><subject>Electron states</subject><subject>Electrostatics</subject><subject>Equilibrium</subject><subject>Holes</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Intermolecular forces</subject><subject>Optical resonators</subject><subject>Photocatalysis and photoelectrochemistry</subject><subject>Physics</subject><subject>Potential energy surfaces</subject><subject>Transition state theory</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pwW9Q9KJCNUnTJPUmY_6BwS56DmmabBltsyXpYN_ezg4FBU_v4f3x8L4PAJcI3iNIs4f8HkJICcNHYIQgL1JGC3gMRhBilBYU0lNwFsKqR4hhMgLzeZvEpU6ctwvbJs4kC--6tkpDlFEnW6m6rkmN1XWVKBllvQs2PCbTTWdrW3rbNYlybbCV9jJa156DEyProC8Ocww-nqfvk9d0Nn95mzzNUkU4jykqq4rliuaccYwKYqgsuWaloVAZhrHCWOe5KqhihOmMY4oRZNTIflmVzGRjcDXkuhCtCMpGrZb9Ja1WUSCaU054j24GtPZu0-kQRWOD0nUtW-26IDBBFNMMkqKn17_oynW-7V_YqwxjxArSq9tBKe9C8NqItbeN9DuBoNj3L3Jx6L-3d4PdH_fVzTfeOv8Dxboy_-G_yZ-CWJIq</recordid><startdate>20200621</startdate><enddate>20200621</enddate><creator>Li, Tao E.</creator><creator>Nitzan, Abraham</creator><creator>Subotnik, Joseph E.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2170-2020</orcidid><orcidid>https://orcid.org/0000-0003-0361-5687</orcidid><orcidid>https://orcid.org/0000-0002-8431-0967</orcidid><orcidid>https://orcid.org/0000000284310967</orcidid><orcidid>https://orcid.org/0000000303615687</orcidid><orcidid>https://orcid.org/0000000321702020</orcidid></search><sort><creationdate>20200621</creationdate><title>On the origin of ground-state vacuum-field catalysis: Equilibrium consideration</title><author>Li, Tao E. ; Nitzan, Abraham ; Subotnik, Joseph E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-1bdd75c658782194f6ab8e7bf60cf722c22e55c96c747e382621076faf72db7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysis</topic><topic>Catalysts and catalysis</topic><topic>Chemical reactions</topic><topic>Coulomb gauge</topic><topic>Coupling</topic><topic>Coupling (molecular)</topic><topic>Dark states</topic><topic>Electron states</topic><topic>Electrostatics</topic><topic>Equilibrium</topic><topic>Holes</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Intermolecular forces</topic><topic>Optical resonators</topic><topic>Photocatalysis and photoelectrochemistry</topic><topic>Physics</topic><topic>Potential energy surfaces</topic><topic>Transition state theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tao E.</creatorcontrib><creatorcontrib>Nitzan, Abraham</creatorcontrib><creatorcontrib>Subotnik, Joseph E.</creatorcontrib><creatorcontrib>Univ. of Pennsylvania, Philadelphia, PA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tao E.</au><au>Nitzan, Abraham</au><au>Subotnik, Joseph E.</au><aucorp>Univ. of Pennsylvania, Philadelphia, PA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the origin of ground-state vacuum-field catalysis: Equilibrium consideration</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-06-21</date><risdate>2020</risdate><volume>152</volume><issue>23</issue><spage>234107</spage><epage>234107</epage><pages>234107-234107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Recent experiments suggest that vibrational strong coupling (VSC) may significantly modify ground-state chemical reactions and their rates even without external pumping. The intrinsic mechanism of this “vacuum-field catalysis” remains largely unclear. Generally, modifications of thermal reactions in the ground electronic states can be caused by equilibrium or non-equilibrium effects. The former are associated with modifications of the reactant equilibrium distribution as expressed by the transition state theory of chemical reaction rates, while the latter stem from the dynamics of reaching and leaving transition state configurations. Here, we examine how VSC can affect chemical reactions rates in a cavity environment according to transition state theory. Our approach is to examine the effect of coupling to cavity mode(s) on the potential of mean force (PMF) associated with the reaction coordinate. Within the context of classical nuclei and classical photons and also assuming no charge overlap between molecules, we find that while the PMF can be affected by the cavity environment, this effect is negligible for the usual micron-length cavities used to examine VSC situations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0006472</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2170-2020</orcidid><orcidid>https://orcid.org/0000-0003-0361-5687</orcidid><orcidid>https://orcid.org/0000-0002-8431-0967</orcidid><orcidid>https://orcid.org/0000000284310967</orcidid><orcidid>https://orcid.org/0000000303615687</orcidid><orcidid>https://orcid.org/0000000321702020</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-06, Vol.152 (23), p.234107-234107
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1656848
source AIP Journals Complete; Alma/SFX Local Collection
subjects Catalysis
Catalysts and catalysis
Chemical reactions
Coulomb gauge
Coupling
Coupling (molecular)
Dark states
Electron states
Electrostatics
Equilibrium
Holes
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Intermolecular forces
Optical resonators
Photocatalysis and photoelectrochemistry
Physics
Potential energy surfaces
Transition state theory
title On the origin of ground-state vacuum-field catalysis: Equilibrium consideration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20origin%20of%20ground-state%20vacuum-field%20catalysis:%20Equilibrium%20consideration&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Li,%20Tao%20E.&rft.aucorp=Univ.%20of%20Pennsylvania,%20Philadelphia,%20PA%20(United%20States)&rft.date=2020-06-21&rft.volume=152&rft.issue=23&rft.spage=234107&rft.epage=234107&rft.pages=234107-234107&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0006472&rft_dat=%3Cproquest_osti_%3E2413221794%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413221794&rft_id=info:pmid/&rfr_iscdi=true