A matrix-free hyperviscosity formulation for high-order ALE hydrodynamics
•Hyperviscosity for ALE hydrodynamics with arbitrary order on unstructured meshes.•Robust shock capturing on moving high-order meshes with high-order convergence.•A method for computing hypervisocisty operator in an efficient, matrix-free manner.•Reduced numerical dissipation and enhanced resolution...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2020-06, Vol.205 (no. 205), p.104577, Article 104577 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | no. 205 |
container_start_page | 104577 |
container_title | Computers & fluids |
container_volume | 205 |
creator | Bello-Maldonado, Pedro D. Kolev, Tzanio V. Rieben, Robert N. Tomov, Vladimir Z. |
description | •Hyperviscosity for ALE hydrodynamics with arbitrary order on unstructured meshes.•Robust shock capturing on moving high-order meshes with high-order convergence.•A method for computing hypervisocisty operator in an efficient, matrix-free manner.•Reduced numerical dissipation and enhanced resolution of complex vortical flow.
The numerical approximation of compressible hydrodynamics is at the core of high-energy density (HED) multiphysics simulations as shocks are the driving force in experiments like inertial confinement fusion (ICF). In this work, we describe our extension of the hyperviscosity technique, originally developed for shock treatment in finite difference simulations, for use in arbitrarily high-order finite element methods for Lagrangian hydrodynamics. Hyperviscosity enables shock capturing while preserving the high-order properties of the underlying discretization away from the shock region. Specifically, we compute a high-order term based on a product of the mesh length scale to a high power scaled by a hyper-Laplacian operator applied to a scalar field. We then form the total artificial viscosity by taking a non-linear blend of this term and a traditional artificial viscosity term. We also present a matrix-free formulation for computing the finite element based hyper-Laplacian operator. Such matrix-free methods have superior performance characteristics compared to traditional full matrix assembly approaches and offer advantages for GPU based HPC hardware. We demonstrate the numerical convergence of our method and its application to complex, multi-material ALE simulations on high-order (curved) meshes. |
doi_str_mv | 10.1016/j.compfluid.2020.104577 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1650435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793020301493</els_id><sourcerecordid>2440940107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-7ee1a2817632d778998bd14605250d23af791623f9a6be5634b2b730f5f13c463</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BouuO-bVpl2WYdSBATe6DmkeNmXa1KQdnH9vSsWtq_vgu5dzDgD3CG4QRPlTu5GuG8xxsmqDIZ63NGPsAqxQwcoUMsouwQrGZcpKAq_BTQgtjDPBdAX2VdKJ0dvv1Hitk-Y8aH-yQbpgx3NinO-moxit6-c-aexnkzqvtE-qwy7Syjt17kVnZbgFV0Ycg777rWvw8bx7376mh7eX_bY6pJKickyZ1kjgArGcYMVYUZZFrRDNYYYzqDARhpUox8SUIq91lhNa45oRaDKDiKQ5WYOH5a8Lo-VB2lHLRrq-13LkKM-isSxCjws0ePc16TDy1k2-j7o4phSWFCLIIsUWSnoXgteGD952wp85gnwOl7f8L1w-h8uXcONltVzq6PRktZ-F6F5qZf2sQzn7748fO2qFiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440940107</pqid></control><display><type>article</type><title>A matrix-free hyperviscosity formulation for high-order ALE hydrodynamics</title><source>Elsevier ScienceDirect Journals</source><creator>Bello-Maldonado, Pedro D. ; Kolev, Tzanio V. ; Rieben, Robert N. ; Tomov, Vladimir Z.</creator><creatorcontrib>Bello-Maldonado, Pedro D. ; Kolev, Tzanio V. ; Rieben, Robert N. ; Tomov, Vladimir Z. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>•Hyperviscosity for ALE hydrodynamics with arbitrary order on unstructured meshes.•Robust shock capturing on moving high-order meshes with high-order convergence.•A method for computing hypervisocisty operator in an efficient, matrix-free manner.•Reduced numerical dissipation and enhanced resolution of complex vortical flow.
The numerical approximation of compressible hydrodynamics is at the core of high-energy density (HED) multiphysics simulations as shocks are the driving force in experiments like inertial confinement fusion (ICF). In this work, we describe our extension of the hyperviscosity technique, originally developed for shock treatment in finite difference simulations, for use in arbitrarily high-order finite element methods for Lagrangian hydrodynamics. Hyperviscosity enables shock capturing while preserving the high-order properties of the underlying discretization away from the shock region. Specifically, we compute a high-order term based on a product of the mesh length scale to a high power scaled by a hyper-Laplacian operator applied to a scalar field. We then form the total artificial viscosity by taking a non-linear blend of this term and a traditional artificial viscosity term. We also present a matrix-free formulation for computing the finite element based hyper-Laplacian operator. Such matrix-free methods have superior performance characteristics compared to traditional full matrix assembly approaches and offer advantages for GPU based HPC hardware. We demonstrate the numerical convergence of our method and its application to complex, multi-material ALE simulations on high-order (curved) meshes.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2020.104577</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Compressibility ; Computational fluid dynamics ; Computer simulation ; Finite difference method ; Finite element method ; Finite elements ; Fluid flow ; Fluid mechanics ; Flux density ; High-order ; Hydrodynamics ; Hyperviscosity ; Inertial confinement fusion ; Lagrangian hydrodynamics ; Mathematical analysis ; MATHEMATICS AND COMPUTING ; Matrix-free methods ; Scalars ; Shock capturing ; Simulation ; Viscosity</subject><ispartof>Computers & fluids, 2020-06, Vol.205 (no. 205), p.104577, Article 104577</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-7ee1a2817632d778998bd14605250d23af791623f9a6be5634b2b730f5f13c463</citedby><cites>FETCH-LOGICAL-c419t-7ee1a2817632d778998bd14605250d23af791623f9a6be5634b2b730f5f13c463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045793020301493$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1650435$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bello-Maldonado, Pedro D.</creatorcontrib><creatorcontrib>Kolev, Tzanio V.</creatorcontrib><creatorcontrib>Rieben, Robert N.</creatorcontrib><creatorcontrib>Tomov, Vladimir Z.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>A matrix-free hyperviscosity formulation for high-order ALE hydrodynamics</title><title>Computers & fluids</title><description>•Hyperviscosity for ALE hydrodynamics with arbitrary order on unstructured meshes.•Robust shock capturing on moving high-order meshes with high-order convergence.•A method for computing hypervisocisty operator in an efficient, matrix-free manner.•Reduced numerical dissipation and enhanced resolution of complex vortical flow.
The numerical approximation of compressible hydrodynamics is at the core of high-energy density (HED) multiphysics simulations as shocks are the driving force in experiments like inertial confinement fusion (ICF). In this work, we describe our extension of the hyperviscosity technique, originally developed for shock treatment in finite difference simulations, for use in arbitrarily high-order finite element methods for Lagrangian hydrodynamics. Hyperviscosity enables shock capturing while preserving the high-order properties of the underlying discretization away from the shock region. Specifically, we compute a high-order term based on a product of the mesh length scale to a high power scaled by a hyper-Laplacian operator applied to a scalar field. We then form the total artificial viscosity by taking a non-linear blend of this term and a traditional artificial viscosity term. We also present a matrix-free formulation for computing the finite element based hyper-Laplacian operator. Such matrix-free methods have superior performance characteristics compared to traditional full matrix assembly approaches and offer advantages for GPU based HPC hardware. We demonstrate the numerical convergence of our method and its application to complex, multi-material ALE simulations on high-order (curved) meshes.</description><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Finite elements</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Flux density</subject><subject>High-order</subject><subject>Hydrodynamics</subject><subject>Hyperviscosity</subject><subject>Inertial confinement fusion</subject><subject>Lagrangian hydrodynamics</subject><subject>Mathematical analysis</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Matrix-free methods</subject><subject>Scalars</subject><subject>Shock capturing</subject><subject>Simulation</subject><subject>Viscosity</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BouuO-bVpl2WYdSBATe6DmkeNmXa1KQdnH9vSsWtq_vgu5dzDgD3CG4QRPlTu5GuG8xxsmqDIZ63NGPsAqxQwcoUMsouwQrGZcpKAq_BTQgtjDPBdAX2VdKJ0dvv1Hitk-Y8aH-yQbpgx3NinO-moxit6-c-aexnkzqvtE-qwy7Syjt17kVnZbgFV0Ycg777rWvw8bx7376mh7eX_bY6pJKickyZ1kjgArGcYMVYUZZFrRDNYYYzqDARhpUox8SUIq91lhNa45oRaDKDiKQ5WYOH5a8Lo-VB2lHLRrq-13LkKM-isSxCjws0ePc16TDy1k2-j7o4phSWFCLIIsUWSnoXgteGD952wp85gnwOl7f8L1w-h8uXcONltVzq6PRktZ-F6F5qZf2sQzn7748fO2qFiQ</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Bello-Maldonado, Pedro D.</creator><creator>Kolev, Tzanio V.</creator><creator>Rieben, Robert N.</creator><creator>Tomov, Vladimir Z.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200615</creationdate><title>A matrix-free hyperviscosity formulation for high-order ALE hydrodynamics</title><author>Bello-Maldonado, Pedro D. ; Kolev, Tzanio V. ; Rieben, Robert N. ; Tomov, Vladimir Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-7ee1a2817632d778998bd14605250d23af791623f9a6be5634b2b730f5f13c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Finite elements</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Flux density</topic><topic>High-order</topic><topic>Hydrodynamics</topic><topic>Hyperviscosity</topic><topic>Inertial confinement fusion</topic><topic>Lagrangian hydrodynamics</topic><topic>Mathematical analysis</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Matrix-free methods</topic><topic>Scalars</topic><topic>Shock capturing</topic><topic>Simulation</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bello-Maldonado, Pedro D.</creatorcontrib><creatorcontrib>Kolev, Tzanio V.</creatorcontrib><creatorcontrib>Rieben, Robert N.</creatorcontrib><creatorcontrib>Tomov, Vladimir Z.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bello-Maldonado, Pedro D.</au><au>Kolev, Tzanio V.</au><au>Rieben, Robert N.</au><au>Tomov, Vladimir Z.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A matrix-free hyperviscosity formulation for high-order ALE hydrodynamics</atitle><jtitle>Computers & fluids</jtitle><date>2020-06-15</date><risdate>2020</risdate><volume>205</volume><issue>no. 205</issue><spage>104577</spage><pages>104577-</pages><artnum>104577</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•Hyperviscosity for ALE hydrodynamics with arbitrary order on unstructured meshes.•Robust shock capturing on moving high-order meshes with high-order convergence.•A method for computing hypervisocisty operator in an efficient, matrix-free manner.•Reduced numerical dissipation and enhanced resolution of complex vortical flow.
The numerical approximation of compressible hydrodynamics is at the core of high-energy density (HED) multiphysics simulations as shocks are the driving force in experiments like inertial confinement fusion (ICF). In this work, we describe our extension of the hyperviscosity technique, originally developed for shock treatment in finite difference simulations, for use in arbitrarily high-order finite element methods for Lagrangian hydrodynamics. Hyperviscosity enables shock capturing while preserving the high-order properties of the underlying discretization away from the shock region. Specifically, we compute a high-order term based on a product of the mesh length scale to a high power scaled by a hyper-Laplacian operator applied to a scalar field. We then form the total artificial viscosity by taking a non-linear blend of this term and a traditional artificial viscosity term. We also present a matrix-free formulation for computing the finite element based hyper-Laplacian operator. Such matrix-free methods have superior performance characteristics compared to traditional full matrix assembly approaches and offer advantages for GPU based HPC hardware. We demonstrate the numerical convergence of our method and its application to complex, multi-material ALE simulations on high-order (curved) meshes.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2020.104577</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2020-06, Vol.205 (no. 205), p.104577, Article 104577 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_osti_scitechconnect_1650435 |
source | Elsevier ScienceDirect Journals |
subjects | Compressibility Computational fluid dynamics Computer simulation Finite difference method Finite element method Finite elements Fluid flow Fluid mechanics Flux density High-order Hydrodynamics Hyperviscosity Inertial confinement fusion Lagrangian hydrodynamics Mathematical analysis MATHEMATICS AND COMPUTING Matrix-free methods Scalars Shock capturing Simulation Viscosity |
title | A matrix-free hyperviscosity formulation for high-order ALE hydrodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20matrix-free%20hyperviscosity%20formulation%20for%20high-order%20ALE%20hydrodynamics&rft.jtitle=Computers%20&%20fluids&rft.au=Bello-Maldonado,%20Pedro%20D.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-06-15&rft.volume=205&rft.issue=no.%20205&rft.spage=104577&rft.pages=104577-&rft.artnum=104577&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2020.104577&rft_dat=%3Cproquest_osti_%3E2440940107%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440940107&rft_id=info:pmid/&rft_els_id=S0045793020301493&rfr_iscdi=true |