Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations
At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scal...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2019-06, Vol.10 (12), p.3381-3389 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3389 |
---|---|
container_issue | 12 |
container_start_page | 3381 |
container_title | The journal of physical chemistry letters |
container_volume | 10 |
creator | Raberg, Jonathan H Vatamanu, Jenel Harris, Stephen J van Oversteeg, Christina H. M Ramos, Axel Borodin, Oleg Cuk, Tanja |
description | At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4 – ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution. |
doi_str_mv | 10.1021/acs.jpclett.9b00879 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1650061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232474240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-ca8c3f0b651d428ec48d0eee8d1ebf78790f0a3f2e8e5fb3e81aaee73dcbe6973</originalsourceid><addsrcrecordid>eNp9kV1LwzAYhYMobn78AkGCV950S5puTS9lfsJEYeptSNK3LqNtapIK-_dmbopXXr0hPOck7zkInVEyoiSlY6n9aNXpGkIYFYoQnhd7aEiLjCc55ZP9P-cBOvJ-Rci0iNQhGjBKM8pyPkTLZ2eVad_xTQ06OKPxte1VDclcrsHhmW06600wtsWfRmLT4oUJPX4zysnNrazxotsorde2W2PZlvjRRq--li6yTZwbzp-gg0rWHk538xi93t68zO6T-dPdw-xqnsiM5iHRkmtWETWd0DJLOeiMlwQAeElBVXnckVREsioFDpNKMeBUSoCclVrBtMjZMbrY-lofjPDaBNBLbds2flLQ6SSGQCN0uYU6Zz968EE0xmuoa9mC7b1IU5ZmeZZmJKJsi-q4ondQic6ZRrq1oERsehCxB7HrQex6iKrz3QO9aqD81fwEH4HxFvhW297FJP2_ll8JQZmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232474240</pqid></control><display><type>article</type><title>Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations</title><source>ACS Publications</source><creator>Raberg, Jonathan H ; Vatamanu, Jenel ; Harris, Stephen J ; van Oversteeg, Christina H. M ; Ramos, Axel ; Borodin, Oleg ; Cuk, Tanja</creator><creatorcontrib>Raberg, Jonathan H ; Vatamanu, Jenel ; Harris, Stephen J ; van Oversteeg, Christina H. M ; Ramos, Axel ; Borodin, Oleg ; Cuk, Tanja ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4 – ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.9b00879</identifier><identifier>PMID: 31141378</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE</subject><ispartof>The journal of physical chemistry letters, 2019-06, Vol.10 (12), p.3381-3389</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-ca8c3f0b651d428ec48d0eee8d1ebf78790f0a3f2e8e5fb3e81aaee73dcbe6973</citedby><cites>FETCH-LOGICAL-a417t-ca8c3f0b651d428ec48d0eee8d1ebf78790f0a3f2e8e5fb3e81aaee73dcbe6973</cites><orcidid>0000-0002-5634-684X ; 0000-0002-9428-5291 ; 0000-0002-1635-2946 ; 0000-0003-0825-1608 ; 000000025634684X ; 0000000294285291 ; 0000000308251608 ; 0000000216352946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.9b00879$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.9b00879$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31141378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1650061$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Raberg, Jonathan H</creatorcontrib><creatorcontrib>Vatamanu, Jenel</creatorcontrib><creatorcontrib>Harris, Stephen J</creatorcontrib><creatorcontrib>van Oversteeg, Christina H. M</creatorcontrib><creatorcontrib>Ramos, Axel</creatorcontrib><creatorcontrib>Borodin, Oleg</creatorcontrib><creatorcontrib>Cuk, Tanja</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4 – ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution.</description><subject>ENERGY STORAGE</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAYhYMobn78AkGCV950S5puTS9lfsJEYeptSNK3LqNtapIK-_dmbopXXr0hPOck7zkInVEyoiSlY6n9aNXpGkIYFYoQnhd7aEiLjCc55ZP9P-cBOvJ-Rci0iNQhGjBKM8pyPkTLZ2eVad_xTQ06OKPxte1VDclcrsHhmW06600wtsWfRmLT4oUJPX4zysnNrazxotsorde2W2PZlvjRRq--li6yTZwbzp-gg0rWHk538xi93t68zO6T-dPdw-xqnsiM5iHRkmtWETWd0DJLOeiMlwQAeElBVXnckVREsioFDpNKMeBUSoCclVrBtMjZMbrY-lofjPDaBNBLbds2flLQ6SSGQCN0uYU6Zz968EE0xmuoa9mC7b1IU5ZmeZZmJKJsi-q4ondQic6ZRrq1oERsehCxB7HrQex6iKrz3QO9aqD81fwEH4HxFvhW297FJP2_ll8JQZmA</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Raberg, Jonathan H</creator><creator>Vatamanu, Jenel</creator><creator>Harris, Stephen J</creator><creator>van Oversteeg, Christina H. M</creator><creator>Ramos, Axel</creator><creator>Borodin, Oleg</creator><creator>Cuk, Tanja</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5634-684X</orcidid><orcidid>https://orcid.org/0000-0002-9428-5291</orcidid><orcidid>https://orcid.org/0000-0002-1635-2946</orcidid><orcidid>https://orcid.org/0000-0003-0825-1608</orcidid><orcidid>https://orcid.org/000000025634684X</orcidid><orcidid>https://orcid.org/0000000294285291</orcidid><orcidid>https://orcid.org/0000000308251608</orcidid><orcidid>https://orcid.org/0000000216352946</orcidid></search><sort><creationdate>20190620</creationdate><title>Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations</title><author>Raberg, Jonathan H ; Vatamanu, Jenel ; Harris, Stephen J ; van Oversteeg, Christina H. M ; Ramos, Axel ; Borodin, Oleg ; Cuk, Tanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-ca8c3f0b651d428ec48d0eee8d1ebf78790f0a3f2e8e5fb3e81aaee73dcbe6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ENERGY STORAGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raberg, Jonathan H</creatorcontrib><creatorcontrib>Vatamanu, Jenel</creatorcontrib><creatorcontrib>Harris, Stephen J</creatorcontrib><creatorcontrib>van Oversteeg, Christina H. M</creatorcontrib><creatorcontrib>Ramos, Axel</creatorcontrib><creatorcontrib>Borodin, Oleg</creatorcontrib><creatorcontrib>Cuk, Tanja</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raberg, Jonathan H</au><au>Vatamanu, Jenel</au><au>Harris, Stephen J</au><au>van Oversteeg, Christina H. M</au><au>Ramos, Axel</au><au>Borodin, Oleg</au><au>Cuk, Tanja</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>10</volume><issue>12</issue><spage>3381</spage><epage>3389</epage><pages>3381-3389</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4 – ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31141378</pmid><doi>10.1021/acs.jpclett.9b00879</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5634-684X</orcidid><orcidid>https://orcid.org/0000-0002-9428-5291</orcidid><orcidid>https://orcid.org/0000-0002-1635-2946</orcidid><orcidid>https://orcid.org/0000-0003-0825-1608</orcidid><orcidid>https://orcid.org/000000025634684X</orcidid><orcidid>https://orcid.org/0000000294285291</orcidid><orcidid>https://orcid.org/0000000308251608</orcidid><orcidid>https://orcid.org/0000000216352946</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2019-06, Vol.10 (12), p.3381-3389 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_osti_scitechconnect_1650061 |
source | ACS Publications |
subjects | ENERGY STORAGE |
title | Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Electric%20Double-Layer%20Composition%20via%20in%20Situ%20Vibrational%20Spectroscopy%20and%20Molecular%20Simulations&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Raberg,%20Jonathan%20H&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-06-20&rft.volume=10&rft.issue=12&rft.spage=3381&rft.epage=3389&rft.pages=3381-3389&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.9b00879&rft_dat=%3Cproquest_osti_%3E2232474240%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232474240&rft_id=info:pmid/31141378&rfr_iscdi=true |