Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations

At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)­capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2019-06, Vol.10 (12), p.3381-3389
Hauptverfasser: Raberg, Jonathan H, Vatamanu, Jenel, Harris, Stephen J, van Oversteeg, Christina H. M, Ramos, Axel, Borodin, Oleg, Cuk, Tanja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3389
container_issue 12
container_start_page 3381
container_title The journal of physical chemistry letters
container_volume 10
creator Raberg, Jonathan H
Vatamanu, Jenel
Harris, Stephen J
van Oversteeg, Christina H. M
Ramos, Axel
Borodin, Oleg
Cuk, Tanja
description At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)­capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4 – ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution.
doi_str_mv 10.1021/acs.jpclett.9b00879
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1650061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2232474240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-ca8c3f0b651d428ec48d0eee8d1ebf78790f0a3f2e8e5fb3e81aaee73dcbe6973</originalsourceid><addsrcrecordid>eNp9kV1LwzAYhYMobn78AkGCV950S5puTS9lfsJEYeptSNK3LqNtapIK-_dmbopXXr0hPOck7zkInVEyoiSlY6n9aNXpGkIYFYoQnhd7aEiLjCc55ZP9P-cBOvJ-Rci0iNQhGjBKM8pyPkTLZ2eVad_xTQ06OKPxte1VDclcrsHhmW06600wtsWfRmLT4oUJPX4zysnNrazxotsorde2W2PZlvjRRq--li6yTZwbzp-gg0rWHk538xi93t68zO6T-dPdw-xqnsiM5iHRkmtWETWd0DJLOeiMlwQAeElBVXnckVREsioFDpNKMeBUSoCclVrBtMjZMbrY-lofjPDaBNBLbds2flLQ6SSGQCN0uYU6Zz968EE0xmuoa9mC7b1IU5ZmeZZmJKJsi-q4ondQic6ZRrq1oERsehCxB7HrQex6iKrz3QO9aqD81fwEH4HxFvhW297FJP2_ll8JQZmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232474240</pqid></control><display><type>article</type><title>Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations</title><source>ACS Publications</source><creator>Raberg, Jonathan H ; Vatamanu, Jenel ; Harris, Stephen J ; van Oversteeg, Christina H. M ; Ramos, Axel ; Borodin, Oleg ; Cuk, Tanja</creator><creatorcontrib>Raberg, Jonathan H ; Vatamanu, Jenel ; Harris, Stephen J ; van Oversteeg, Christina H. M ; Ramos, Axel ; Borodin, Oleg ; Cuk, Tanja ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)­capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4 – ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&amp;P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.9b00879</identifier><identifier>PMID: 31141378</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE</subject><ispartof>The journal of physical chemistry letters, 2019-06, Vol.10 (12), p.3381-3389</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-ca8c3f0b651d428ec48d0eee8d1ebf78790f0a3f2e8e5fb3e81aaee73dcbe6973</citedby><cites>FETCH-LOGICAL-a417t-ca8c3f0b651d428ec48d0eee8d1ebf78790f0a3f2e8e5fb3e81aaee73dcbe6973</cites><orcidid>0000-0002-5634-684X ; 0000-0002-9428-5291 ; 0000-0002-1635-2946 ; 0000-0003-0825-1608 ; 000000025634684X ; 0000000294285291 ; 0000000308251608 ; 0000000216352946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.9b00879$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.9b00879$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31141378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1650061$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Raberg, Jonathan H</creatorcontrib><creatorcontrib>Vatamanu, Jenel</creatorcontrib><creatorcontrib>Harris, Stephen J</creatorcontrib><creatorcontrib>van Oversteeg, Christina H. M</creatorcontrib><creatorcontrib>Ramos, Axel</creatorcontrib><creatorcontrib>Borodin, Oleg</creatorcontrib><creatorcontrib>Cuk, Tanja</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)­capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4 – ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&amp;P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution.</description><subject>ENERGY STORAGE</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAYhYMobn78AkGCV950S5puTS9lfsJEYeptSNK3LqNtapIK-_dmbopXXr0hPOck7zkInVEyoiSlY6n9aNXpGkIYFYoQnhd7aEiLjCc55ZP9P-cBOvJ-Rci0iNQhGjBKM8pyPkTLZ2eVad_xTQ06OKPxte1VDclcrsHhmW06600wtsWfRmLT4oUJPX4zysnNrazxotsorde2W2PZlvjRRq--li6yTZwbzp-gg0rWHk538xi93t68zO6T-dPdw-xqnsiM5iHRkmtWETWd0DJLOeiMlwQAeElBVXnckVREsioFDpNKMeBUSoCclVrBtMjZMbrY-lofjPDaBNBLbds2flLQ6SSGQCN0uYU6Zz968EE0xmuoa9mC7b1IU5ZmeZZmJKJsi-q4ondQic6ZRrq1oERsehCxB7HrQex6iKrz3QO9aqD81fwEH4HxFvhW297FJP2_ll8JQZmA</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Raberg, Jonathan H</creator><creator>Vatamanu, Jenel</creator><creator>Harris, Stephen J</creator><creator>van Oversteeg, Christina H. M</creator><creator>Ramos, Axel</creator><creator>Borodin, Oleg</creator><creator>Cuk, Tanja</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5634-684X</orcidid><orcidid>https://orcid.org/0000-0002-9428-5291</orcidid><orcidid>https://orcid.org/0000-0002-1635-2946</orcidid><orcidid>https://orcid.org/0000-0003-0825-1608</orcidid><orcidid>https://orcid.org/000000025634684X</orcidid><orcidid>https://orcid.org/0000000294285291</orcidid><orcidid>https://orcid.org/0000000308251608</orcidid><orcidid>https://orcid.org/0000000216352946</orcidid></search><sort><creationdate>20190620</creationdate><title>Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations</title><author>Raberg, Jonathan H ; Vatamanu, Jenel ; Harris, Stephen J ; van Oversteeg, Christina H. M ; Ramos, Axel ; Borodin, Oleg ; Cuk, Tanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-ca8c3f0b651d428ec48d0eee8d1ebf78790f0a3f2e8e5fb3e81aaee73dcbe6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ENERGY STORAGE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raberg, Jonathan H</creatorcontrib><creatorcontrib>Vatamanu, Jenel</creatorcontrib><creatorcontrib>Harris, Stephen J</creatorcontrib><creatorcontrib>van Oversteeg, Christina H. M</creatorcontrib><creatorcontrib>Ramos, Axel</creatorcontrib><creatorcontrib>Borodin, Oleg</creatorcontrib><creatorcontrib>Cuk, Tanja</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raberg, Jonathan H</au><au>Vatamanu, Jenel</au><au>Harris, Stephen J</au><au>van Oversteeg, Christina H. M</au><au>Ramos, Axel</au><au>Borodin, Oleg</au><au>Cuk, Tanja</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>10</volume><issue>12</issue><spage>3381</spage><epage>3389</epage><pages>3381-3389</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)­capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4 – ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&amp;P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31141378</pmid><doi>10.1021/acs.jpclett.9b00879</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5634-684X</orcidid><orcidid>https://orcid.org/0000-0002-9428-5291</orcidid><orcidid>https://orcid.org/0000-0002-1635-2946</orcidid><orcidid>https://orcid.org/0000-0003-0825-1608</orcidid><orcidid>https://orcid.org/000000025634684X</orcidid><orcidid>https://orcid.org/0000000294285291</orcidid><orcidid>https://orcid.org/0000000308251608</orcidid><orcidid>https://orcid.org/0000000216352946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2019-06, Vol.10 (12), p.3381-3389
issn 1948-7185
1948-7185
language eng
recordid cdi_osti_scitechconnect_1650061
source ACS Publications
subjects ENERGY STORAGE
title Probing Electric Double-Layer Composition via in Situ Vibrational Spectroscopy and Molecular Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20Electric%20Double-Layer%20Composition%20via%20in%20Situ%20Vibrational%20Spectroscopy%20and%20Molecular%20Simulations&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Raberg,%20Jonathan%20H&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-06-20&rft.volume=10&rft.issue=12&rft.spage=3381&rft.epage=3389&rft.pages=3381-3389&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.9b00879&rft_dat=%3Cproquest_osti_%3E2232474240%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2232474240&rft_id=info:pmid/31141378&rfr_iscdi=true