Interaction of hydrogen with actinide dioxide (011) surfaces
The corrosion and oxidation of actinide metals, leading to the formation of metal-oxide surface layers with the catalytic evolution of hydrogen, impacts the management of nuclear materials. Here, the interaction of hydrogen with actinide dioxide (AnO2, An = U, Np, or Pu) (011) surfaces by Hubbard co...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-07, Vol.153 (1), p.014705-014705 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 014705 |
---|---|
container_issue | 1 |
container_start_page | 014705 |
container_title | The Journal of chemical physics |
container_volume | 153 |
creator | Pegg, James T. Shields, Ashley E. Storr, Mark T. Scanlon, David O. de Leeuw, Nora H. |
description | The corrosion and oxidation of actinide metals, leading to the formation of metal-oxide surface layers with the catalytic evolution of hydrogen, impacts the management of nuclear materials. Here, the interaction of hydrogen with actinide dioxide (AnO2, An = U, Np, or Pu) (011) surfaces by Hubbard corrected density functional theory (PBEsol+U) has been studied, including spin–orbit interactions and non-collinear 3k anti-ferromagnetic behavior. The actinide dioxides crystalize in the fluorite-type structure, and although the (111) surface dominates the crystal morphology, the (011) surface energetics may lead to more significant interaction with hydrogen. The dissociative adsorption of hydrogen on the UO2 (0.44 eV), NpO2 (−0.47 eV), and PuO2 (−1.71 eV) (011) surfaces has been calculated. It is found that hydrogen dissociates on the PuO2 (011) surface; however, UO2 (011) and NpO2 (011) surfaces are relatively inert. Recombination of hydrogen ions is likely to occur on the UO2 (011) and NpO2 (011) surfaces, whereas hydroxide formation is shown to occur on the PuO2 (011) surface, which distorts the surface structure. |
doi_str_mv | 10.1063/5.0010200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1649368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419531370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-d48ad59d150d4f4f3498ad2a790462a5edbd80f60abc0e69ebf2035ffafee6ac3</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w6KUVtk6STbYBL1L8KBS86Dmk-bBb2k1NdtX-e7NsQfDoaeDlYZh5EbrEMMHA6S2bAGAgAEdogGEq8pILOEYDAIJzwYGforMY15BUSYoBupvXjQ1KN5WvM--y1d4E_27r7KtqVlmX15Wxman8dzdHgPE4i21wStt4jk6c2kR7cZhD9Pb48Dp7zhcvT_PZ_SLXBSFNboqpMkwYzMAUrnC0ECkgqhRQcKKYNUszBcdBLTVYLuzSEaDMOeWs5UrTIbrq9_rYVDLqqrF6pX1dW91IzAtB-TShUY92wX-0NjZyW0VtNxtVW99GSdItAAI4S_T6D137NtTphaSwYBTTEpIa90oHH2OwTu5CtVVhLzHIrmzJ5KHsZG962x2nujL_hz99-IVyZxz9ATgPiuI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419531370</pqid></control><display><type>article</type><title>Interaction of hydrogen with actinide dioxide (011) surfaces</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Pegg, James T. ; Shields, Ashley E. ; Storr, Mark T. ; Scanlon, David O. ; de Leeuw, Nora H.</creator><creatorcontrib>Pegg, James T. ; Shields, Ashley E. ; Storr, Mark T. ; Scanlon, David O. ; de Leeuw, Nora H. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The corrosion and oxidation of actinide metals, leading to the formation of metal-oxide surface layers with the catalytic evolution of hydrogen, impacts the management of nuclear materials. Here, the interaction of hydrogen with actinide dioxide (AnO2, An = U, Np, or Pu) (011) surfaces by Hubbard corrected density functional theory (PBEsol+U) has been studied, including spin–orbit interactions and non-collinear 3k anti-ferromagnetic behavior. The actinide dioxides crystalize in the fluorite-type structure, and although the (111) surface dominates the crystal morphology, the (011) surface energetics may lead to more significant interaction with hydrogen. The dissociative adsorption of hydrogen on the UO2 (0.44 eV), NpO2 (−0.47 eV), and PuO2 (−1.71 eV) (011) surfaces has been calculated. It is found that hydrogen dissociates on the PuO2 (011) surface; however, UO2 (011) and NpO2 (011) surfaces are relatively inert. Recombination of hydrogen ions is likely to occur on the UO2 (011) and NpO2 (011) surfaces, whereas hydroxide formation is shown to occur on the PuO2 (011) surface, which distorts the surface structure.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0010200</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actinide Dioxide ; Actinides ; Crystal morphology ; Crystal structure ; Density functional theory ; DFT ; Ferromagnetism ; Fluorite ; Hydrogen ; Hydrogen Interaction ; Hydrogen ions ; Ion recombination ; MATERIALS SCIENCE ; Metal oxides ; Noncollinear Magnetism ; Nuclear engineering ; Nuclear Fuel ; Oxidation ; Physics ; Plutonium dioxide ; Surface layers ; Surface structure ; Uranium dioxide</subject><ispartof>The Journal of chemical physics, 2020-07, Vol.153 (1), p.014705-014705</ispartof><rights>Crown</rights><rights>2020Crown</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-d48ad59d150d4f4f3498ad2a790462a5edbd80f60abc0e69ebf2035ffafee6ac3</citedby><cites>FETCH-LOGICAL-c422t-d48ad59d150d4f4f3498ad2a790462a5edbd80f60abc0e69ebf2035ffafee6ac3</cites><orcidid>0000-0002-1008-5242 ; 0000-0002-6743-8651 ; 0000-0002-8271-0545 ; 0000-0001-9174-8601 ; 0000-0002-2586-963X ; 0000000282710545 ; 000000022586963X ; 0000000191748601 ; 0000000210085242 ; 0000000267438651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0010200$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1649368$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pegg, James T.</creatorcontrib><creatorcontrib>Shields, Ashley E.</creatorcontrib><creatorcontrib>Storr, Mark T.</creatorcontrib><creatorcontrib>Scanlon, David O.</creatorcontrib><creatorcontrib>de Leeuw, Nora H.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Interaction of hydrogen with actinide dioxide (011) surfaces</title><title>The Journal of chemical physics</title><description>The corrosion and oxidation of actinide metals, leading to the formation of metal-oxide surface layers with the catalytic evolution of hydrogen, impacts the management of nuclear materials. Here, the interaction of hydrogen with actinide dioxide (AnO2, An = U, Np, or Pu) (011) surfaces by Hubbard corrected density functional theory (PBEsol+U) has been studied, including spin–orbit interactions and non-collinear 3k anti-ferromagnetic behavior. The actinide dioxides crystalize in the fluorite-type structure, and although the (111) surface dominates the crystal morphology, the (011) surface energetics may lead to more significant interaction with hydrogen. The dissociative adsorption of hydrogen on the UO2 (0.44 eV), NpO2 (−0.47 eV), and PuO2 (−1.71 eV) (011) surfaces has been calculated. It is found that hydrogen dissociates on the PuO2 (011) surface; however, UO2 (011) and NpO2 (011) surfaces are relatively inert. Recombination of hydrogen ions is likely to occur on the UO2 (011) and NpO2 (011) surfaces, whereas hydroxide formation is shown to occur on the PuO2 (011) surface, which distorts the surface structure.</description><subject>Actinide Dioxide</subject><subject>Actinides</subject><subject>Crystal morphology</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>DFT</subject><subject>Ferromagnetism</subject><subject>Fluorite</subject><subject>Hydrogen</subject><subject>Hydrogen Interaction</subject><subject>Hydrogen ions</subject><subject>Ion recombination</subject><subject>MATERIALS SCIENCE</subject><subject>Metal oxides</subject><subject>Noncollinear Magnetism</subject><subject>Nuclear engineering</subject><subject>Nuclear Fuel</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Plutonium dioxide</subject><subject>Surface layers</subject><subject>Surface structure</subject><subject>Uranium dioxide</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w6KUVtk6STbYBL1L8KBS86Dmk-bBb2k1NdtX-e7NsQfDoaeDlYZh5EbrEMMHA6S2bAGAgAEdogGEq8pILOEYDAIJzwYGforMY15BUSYoBupvXjQ1KN5WvM--y1d4E_27r7KtqVlmX15Wxman8dzdHgPE4i21wStt4jk6c2kR7cZhD9Pb48Dp7zhcvT_PZ_SLXBSFNboqpMkwYzMAUrnC0ECkgqhRQcKKYNUszBcdBLTVYLuzSEaDMOeWs5UrTIbrq9_rYVDLqqrF6pX1dW91IzAtB-TShUY92wX-0NjZyW0VtNxtVW99GSdItAAI4S_T6D137NtTphaSwYBTTEpIa90oHH2OwTu5CtVVhLzHIrmzJ5KHsZG962x2nujL_hz99-IVyZxz9ATgPiuI</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Pegg, James T.</creator><creator>Shields, Ashley E.</creator><creator>Storr, Mark T.</creator><creator>Scanlon, David O.</creator><creator>de Leeuw, Nora H.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1008-5242</orcidid><orcidid>https://orcid.org/0000-0002-6743-8651</orcidid><orcidid>https://orcid.org/0000-0002-8271-0545</orcidid><orcidid>https://orcid.org/0000-0001-9174-8601</orcidid><orcidid>https://orcid.org/0000-0002-2586-963X</orcidid><orcidid>https://orcid.org/0000000282710545</orcidid><orcidid>https://orcid.org/000000022586963X</orcidid><orcidid>https://orcid.org/0000000191748601</orcidid><orcidid>https://orcid.org/0000000210085242</orcidid><orcidid>https://orcid.org/0000000267438651</orcidid></search><sort><creationdate>20200707</creationdate><title>Interaction of hydrogen with actinide dioxide (011) surfaces</title><author>Pegg, James T. ; Shields, Ashley E. ; Storr, Mark T. ; Scanlon, David O. ; de Leeuw, Nora H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-d48ad59d150d4f4f3498ad2a790462a5edbd80f60abc0e69ebf2035ffafee6ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actinide Dioxide</topic><topic>Actinides</topic><topic>Crystal morphology</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>DFT</topic><topic>Ferromagnetism</topic><topic>Fluorite</topic><topic>Hydrogen</topic><topic>Hydrogen Interaction</topic><topic>Hydrogen ions</topic><topic>Ion recombination</topic><topic>MATERIALS SCIENCE</topic><topic>Metal oxides</topic><topic>Noncollinear Magnetism</topic><topic>Nuclear engineering</topic><topic>Nuclear Fuel</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Plutonium dioxide</topic><topic>Surface layers</topic><topic>Surface structure</topic><topic>Uranium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pegg, James T.</creatorcontrib><creatorcontrib>Shields, Ashley E.</creatorcontrib><creatorcontrib>Storr, Mark T.</creatorcontrib><creatorcontrib>Scanlon, David O.</creatorcontrib><creatorcontrib>de Leeuw, Nora H.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pegg, James T.</au><au>Shields, Ashley E.</au><au>Storr, Mark T.</au><au>Scanlon, David O.</au><au>de Leeuw, Nora H.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of hydrogen with actinide dioxide (011) surfaces</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-07-07</date><risdate>2020</risdate><volume>153</volume><issue>1</issue><spage>014705</spage><epage>014705</epage><pages>014705-014705</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The corrosion and oxidation of actinide metals, leading to the formation of metal-oxide surface layers with the catalytic evolution of hydrogen, impacts the management of nuclear materials. Here, the interaction of hydrogen with actinide dioxide (AnO2, An = U, Np, or Pu) (011) surfaces by Hubbard corrected density functional theory (PBEsol+U) has been studied, including spin–orbit interactions and non-collinear 3k anti-ferromagnetic behavior. The actinide dioxides crystalize in the fluorite-type structure, and although the (111) surface dominates the crystal morphology, the (011) surface energetics may lead to more significant interaction with hydrogen. The dissociative adsorption of hydrogen on the UO2 (0.44 eV), NpO2 (−0.47 eV), and PuO2 (−1.71 eV) (011) surfaces has been calculated. It is found that hydrogen dissociates on the PuO2 (011) surface; however, UO2 (011) and NpO2 (011) surfaces are relatively inert. Recombination of hydrogen ions is likely to occur on the UO2 (011) and NpO2 (011) surfaces, whereas hydroxide formation is shown to occur on the PuO2 (011) surface, which distorts the surface structure.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0010200</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1008-5242</orcidid><orcidid>https://orcid.org/0000-0002-6743-8651</orcidid><orcidid>https://orcid.org/0000-0002-8271-0545</orcidid><orcidid>https://orcid.org/0000-0001-9174-8601</orcidid><orcidid>https://orcid.org/0000-0002-2586-963X</orcidid><orcidid>https://orcid.org/0000000282710545</orcidid><orcidid>https://orcid.org/000000022586963X</orcidid><orcidid>https://orcid.org/0000000191748601</orcidid><orcidid>https://orcid.org/0000000210085242</orcidid><orcidid>https://orcid.org/0000000267438651</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-07, Vol.153 (1), p.014705-014705 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_1649368 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Actinide Dioxide Actinides Crystal morphology Crystal structure Density functional theory DFT Ferromagnetism Fluorite Hydrogen Hydrogen Interaction Hydrogen ions Ion recombination MATERIALS SCIENCE Metal oxides Noncollinear Magnetism Nuclear engineering Nuclear Fuel Oxidation Physics Plutonium dioxide Surface layers Surface structure Uranium dioxide |
title | Interaction of hydrogen with actinide dioxide (011) surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A23%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20hydrogen%20with%20actinide%20dioxide%20(011)%20surfaces&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Pegg,%20James%20T.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-07-07&rft.volume=153&rft.issue=1&rft.spage=014705&rft.epage=014705&rft.pages=014705-014705&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0010200&rft_dat=%3Cproquest_osti_%3E2419531370%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419531370&rft_id=info:pmid/&rfr_iscdi=true |