Lithium Iron Aluminum Nickelate, LiNixFeyAlzO2—New Sustainable Cathodes for Next‐Generation Cobalt‐Free Li‐Ion Batteries
In recent years, cobalt has become a critical constraint on the supply chain of the Li‐ion battery industry. With the ever‐increasing projections for electric vehicles, the dependency of current Li‐ion batteries on the ever‐fluctuating cobalt prices poses serious environmental and sustainability iss...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-08, Vol.32 (34), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 34 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Muralidharan, Nitin Essehli, Rachid Hermann, Raphael P. Amin, Ruhul Jafta, Charl Zhang, Junjie Liu, Jue Du, Zhijia Meyer, Harry M. Self, Ethan Nanda, Jagjit Belharouak, Ilias |
description | In recent years, cobalt has become a critical constraint on the supply chain of the Li‐ion battery industry. With the ever‐increasing projections for electric vehicles, the dependency of current Li‐ion batteries on the ever‐fluctuating cobalt prices poses serious environmental and sustainability issues. To address these challenges, a new class of cobalt‐free materials with general formula of LiNixFeyAlzO2 (x + y + z = 1), termed as the lithium iron aluminum nickelate (NFA) class of cathodes, is introduced. These cobalt‐free materials are synthesized using the sol–gel process to explore their compositional landscape by varying aluminum and iron. These NFA variants are characterized using electron microscopy, neutron and X‐ray diffraction, and Mössbauer and X‐ray photoelectron spectroscopy to investigate their morphological, physical, and crystal‐structure properties. Operando experiments by X‐ray diffraction, Mössbauer spectroscopy, and galvanostatic intermittent titration have been also used to study the crystallographic transitions, electrochemical activity, and Li‐ion diffusivity upon lithium removal and uptake in the NFA cathodes. NFA compositions yield specific capacities of ≈200 mAh g−1, demonstrating reasonable rate capability and cycling stability with ≈80% capacity retention after 100 charge/discharge cycles. While this is an early stage of research, the potential that these cathodes could have as viable candidates in next‐generation cobalt‐free lithium‐ion batteries is highlighted here.
Cobalt has become a critical constraint on the supply chain of the Li‐ion battery industry due to the dependency of current Li‐ion batteries on the ever‐fluctuating cobalt prices. To overcome this cobalt conundrum, a new class of cobalt‐free layered cathodes with a general formula of LiNixFeyAlzO2 (x + y + z = 1) is introduced, termed as the lithium iron aluminum nickelate (NFA) class. |
doi_str_mv | 10.1002/adma.202002960 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1649238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436896137</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3650-ab7e2d85b1121af435f9dac251c4f48c2fee13451d0ca696b3581f6ac59c75033</originalsourceid><addsrcrecordid>eNo9kb1OwzAUhS0EEuVnZY5gJeCf2I3HUChUKmUAZstxbqghTcB2BGXqIzDwhDwJroqY7jlHn46udBA6IviMYEzPdbXQZxTTqKXAW2hAOCVphiXfRgMsGU-lyPJdtOf9M8Y4MmKAVlMb5rZfJBPXtUnR9AvbRjez5gUaHeA0mdqZ_RjDsmg-7-jP6nsG78l974O2rS4bSEY6zLsKfFJ3LpnBR_hZfV1DC04HGytHXambdTZ2ALEsqkmML3QI4Cz4A7RT68bD4d_dR4_jq4fRTTq9u56Mimn6xATHqS6HQKucl4RQouuM8VpW2lBOTFZnuaE1AGEZJxU2WkhRMp6TWmjDpRlyzNg-Ot70dj5Y5Y0NYOama1swQRGRScryCJ1soFfXvfXgg3ruetfGvxTNmMilIGwYKbmh3m0DS_Xq7EK7pSJYrXdQ6x3U_w6quLwt_h37BaTiglo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436896137</pqid></control><display><type>article</type><title>Lithium Iron Aluminum Nickelate, LiNixFeyAlzO2—New Sustainable Cathodes for Next‐Generation Cobalt‐Free Li‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Muralidharan, Nitin ; Essehli, Rachid ; Hermann, Raphael P. ; Amin, Ruhul ; Jafta, Charl ; Zhang, Junjie ; Liu, Jue ; Du, Zhijia ; Meyer, Harry M. ; Self, Ethan ; Nanda, Jagjit ; Belharouak, Ilias</creator><creatorcontrib>Muralidharan, Nitin ; Essehli, Rachid ; Hermann, Raphael P. ; Amin, Ruhul ; Jafta, Charl ; Zhang, Junjie ; Liu, Jue ; Du, Zhijia ; Meyer, Harry M. ; Self, Ethan ; Nanda, Jagjit ; Belharouak, Ilias ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>In recent years, cobalt has become a critical constraint on the supply chain of the Li‐ion battery industry. With the ever‐increasing projections for electric vehicles, the dependency of current Li‐ion batteries on the ever‐fluctuating cobalt prices poses serious environmental and sustainability issues. To address these challenges, a new class of cobalt‐free materials with general formula of LiNixFeyAlzO2 (x + y + z = 1), termed as the lithium iron aluminum nickelate (NFA) class of cathodes, is introduced. These cobalt‐free materials are synthesized using the sol–gel process to explore their compositional landscape by varying aluminum and iron. These NFA variants are characterized using electron microscopy, neutron and X‐ray diffraction, and Mössbauer and X‐ray photoelectron spectroscopy to investigate their morphological, physical, and crystal‐structure properties. Operando experiments by X‐ray diffraction, Mössbauer spectroscopy, and galvanostatic intermittent titration have been also used to study the crystallographic transitions, electrochemical activity, and Li‐ion diffusivity upon lithium removal and uptake in the NFA cathodes. NFA compositions yield specific capacities of ≈200 mAh g−1, demonstrating reasonable rate capability and cycling stability with ≈80% capacity retention after 100 charge/discharge cycles. While this is an early stage of research, the potential that these cathodes could have as viable candidates in next‐generation cobalt‐free lithium‐ion batteries is highlighted here.
Cobalt has become a critical constraint on the supply chain of the Li‐ion battery industry due to the dependency of current Li‐ion batteries on the ever‐fluctuating cobalt prices. To overcome this cobalt conundrum, a new class of cobalt‐free layered cathodes with a general formula of LiNixFeyAlzO2 (x + y + z = 1) is introduced, termed as the lithium iron aluminum nickelate (NFA) class.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202002960</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Cathodes ; Cobalt ; Cobalt‐free cathodes ; Crystal structure ; Crystallography ; Electric vehicles ; ENERGY STORAGE ; Iron ; iron redox ; layered cathodes ; Lithium ; Lithium-ion batteries ; Materials science ; Mossbauer spectroscopy ; nickel‐rich materials ; Photoelectrons ; Sol-gel processes ; Spectrum analysis ; Supply chains ; Sustainability ; Titration ; X-ray diffraction</subject><ispartof>Advanced materials (Weinheim), 2020-08, Vol.32 (34), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6042-5295 ; 0000-0002-5588-0696 ; 0000-0002-1160-9159 ; 0000-0002-3985-0278 ; 0000000239850278 ; 0000000211609159 ; 0000000160066317 ; 0000000255880696 ; 000000024453910X ; 0000000251780487 ; 0000000160425295 ; 0000000297736799 ; 0000000255611330 ; 0000000268750057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202002960$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202002960$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1649238$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Muralidharan, Nitin</creatorcontrib><creatorcontrib>Essehli, Rachid</creatorcontrib><creatorcontrib>Hermann, Raphael P.</creatorcontrib><creatorcontrib>Amin, Ruhul</creatorcontrib><creatorcontrib>Jafta, Charl</creatorcontrib><creatorcontrib>Zhang, Junjie</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Du, Zhijia</creatorcontrib><creatorcontrib>Meyer, Harry M.</creatorcontrib><creatorcontrib>Self, Ethan</creatorcontrib><creatorcontrib>Nanda, Jagjit</creatorcontrib><creatorcontrib>Belharouak, Ilias</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Lithium Iron Aluminum Nickelate, LiNixFeyAlzO2—New Sustainable Cathodes for Next‐Generation Cobalt‐Free Li‐Ion Batteries</title><title>Advanced materials (Weinheim)</title><description>In recent years, cobalt has become a critical constraint on the supply chain of the Li‐ion battery industry. With the ever‐increasing projections for electric vehicles, the dependency of current Li‐ion batteries on the ever‐fluctuating cobalt prices poses serious environmental and sustainability issues. To address these challenges, a new class of cobalt‐free materials with general formula of LiNixFeyAlzO2 (x + y + z = 1), termed as the lithium iron aluminum nickelate (NFA) class of cathodes, is introduced. These cobalt‐free materials are synthesized using the sol–gel process to explore their compositional landscape by varying aluminum and iron. These NFA variants are characterized using electron microscopy, neutron and X‐ray diffraction, and Mössbauer and X‐ray photoelectron spectroscopy to investigate their morphological, physical, and crystal‐structure properties. Operando experiments by X‐ray diffraction, Mössbauer spectroscopy, and galvanostatic intermittent titration have been also used to study the crystallographic transitions, electrochemical activity, and Li‐ion diffusivity upon lithium removal and uptake in the NFA cathodes. NFA compositions yield specific capacities of ≈200 mAh g−1, demonstrating reasonable rate capability and cycling stability with ≈80% capacity retention after 100 charge/discharge cycles. While this is an early stage of research, the potential that these cathodes could have as viable candidates in next‐generation cobalt‐free lithium‐ion batteries is highlighted here.
Cobalt has become a critical constraint on the supply chain of the Li‐ion battery industry due to the dependency of current Li‐ion batteries on the ever‐fluctuating cobalt prices. To overcome this cobalt conundrum, a new class of cobalt‐free layered cathodes with a general formula of LiNixFeyAlzO2 (x + y + z = 1) is introduced, termed as the lithium iron aluminum nickelate (NFA) class.</description><subject>Aluminum</subject><subject>Cathodes</subject><subject>Cobalt</subject><subject>Cobalt‐free cathodes</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Electric vehicles</subject><subject>ENERGY STORAGE</subject><subject>Iron</subject><subject>iron redox</subject><subject>layered cathodes</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Mossbauer spectroscopy</subject><subject>nickel‐rich materials</subject><subject>Photoelectrons</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Supply chains</subject><subject>Sustainability</subject><subject>Titration</subject><subject>X-ray diffraction</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kb1OwzAUhS0EEuVnZY5gJeCf2I3HUChUKmUAZstxbqghTcB2BGXqIzDwhDwJroqY7jlHn46udBA6IviMYEzPdbXQZxTTqKXAW2hAOCVphiXfRgMsGU-lyPJdtOf9M8Y4MmKAVlMb5rZfJBPXtUnR9AvbRjez5gUaHeA0mdqZ_RjDsmg-7-jP6nsG78l974O2rS4bSEY6zLsKfFJ3LpnBR_hZfV1DC04HGytHXambdTZ2ALEsqkmML3QI4Cz4A7RT68bD4d_dR4_jq4fRTTq9u56Mimn6xATHqS6HQKucl4RQouuM8VpW2lBOTFZnuaE1AGEZJxU2WkhRMp6TWmjDpRlyzNg-Ot70dj5Y5Y0NYOama1swQRGRScryCJ1soFfXvfXgg3ruetfGvxTNmMilIGwYKbmh3m0DS_Xq7EK7pSJYrXdQ6x3U_w6quLwt_h37BaTiglo</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Muralidharan, Nitin</creator><creator>Essehli, Rachid</creator><creator>Hermann, Raphael P.</creator><creator>Amin, Ruhul</creator><creator>Jafta, Charl</creator><creator>Zhang, Junjie</creator><creator>Liu, Jue</creator><creator>Du, Zhijia</creator><creator>Meyer, Harry M.</creator><creator>Self, Ethan</creator><creator>Nanda, Jagjit</creator><creator>Belharouak, Ilias</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6042-5295</orcidid><orcidid>https://orcid.org/0000-0002-5588-0696</orcidid><orcidid>https://orcid.org/0000-0002-1160-9159</orcidid><orcidid>https://orcid.org/0000-0002-3985-0278</orcidid><orcidid>https://orcid.org/0000000239850278</orcidid><orcidid>https://orcid.org/0000000211609159</orcidid><orcidid>https://orcid.org/0000000160066317</orcidid><orcidid>https://orcid.org/0000000255880696</orcidid><orcidid>https://orcid.org/000000024453910X</orcidid><orcidid>https://orcid.org/0000000251780487</orcidid><orcidid>https://orcid.org/0000000160425295</orcidid><orcidid>https://orcid.org/0000000297736799</orcidid><orcidid>https://orcid.org/0000000255611330</orcidid><orcidid>https://orcid.org/0000000268750057</orcidid></search><sort><creationdate>20200801</creationdate><title>Lithium Iron Aluminum Nickelate, LiNixFeyAlzO2—New Sustainable Cathodes for Next‐Generation Cobalt‐Free Li‐Ion Batteries</title><author>Muralidharan, Nitin ; Essehli, Rachid ; Hermann, Raphael P. ; Amin, Ruhul ; Jafta, Charl ; Zhang, Junjie ; Liu, Jue ; Du, Zhijia ; Meyer, Harry M. ; Self, Ethan ; Nanda, Jagjit ; Belharouak, Ilias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3650-ab7e2d85b1121af435f9dac251c4f48c2fee13451d0ca696b3581f6ac59c75033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Cathodes</topic><topic>Cobalt</topic><topic>Cobalt‐free cathodes</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Electric vehicles</topic><topic>ENERGY STORAGE</topic><topic>Iron</topic><topic>iron redox</topic><topic>layered cathodes</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Mossbauer spectroscopy</topic><topic>nickel‐rich materials</topic><topic>Photoelectrons</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Supply chains</topic><topic>Sustainability</topic><topic>Titration</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muralidharan, Nitin</creatorcontrib><creatorcontrib>Essehli, Rachid</creatorcontrib><creatorcontrib>Hermann, Raphael P.</creatorcontrib><creatorcontrib>Amin, Ruhul</creatorcontrib><creatorcontrib>Jafta, Charl</creatorcontrib><creatorcontrib>Zhang, Junjie</creatorcontrib><creatorcontrib>Liu, Jue</creatorcontrib><creatorcontrib>Du, Zhijia</creatorcontrib><creatorcontrib>Meyer, Harry M.</creatorcontrib><creatorcontrib>Self, Ethan</creatorcontrib><creatorcontrib>Nanda, Jagjit</creatorcontrib><creatorcontrib>Belharouak, Ilias</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muralidharan, Nitin</au><au>Essehli, Rachid</au><au>Hermann, Raphael P.</au><au>Amin, Ruhul</au><au>Jafta, Charl</au><au>Zhang, Junjie</au><au>Liu, Jue</au><au>Du, Zhijia</au><au>Meyer, Harry M.</au><au>Self, Ethan</au><au>Nanda, Jagjit</au><au>Belharouak, Ilias</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Iron Aluminum Nickelate, LiNixFeyAlzO2—New Sustainable Cathodes for Next‐Generation Cobalt‐Free Li‐Ion Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>32</volume><issue>34</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>In recent years, cobalt has become a critical constraint on the supply chain of the Li‐ion battery industry. With the ever‐increasing projections for electric vehicles, the dependency of current Li‐ion batteries on the ever‐fluctuating cobalt prices poses serious environmental and sustainability issues. To address these challenges, a new class of cobalt‐free materials with general formula of LiNixFeyAlzO2 (x + y + z = 1), termed as the lithium iron aluminum nickelate (NFA) class of cathodes, is introduced. These cobalt‐free materials are synthesized using the sol–gel process to explore their compositional landscape by varying aluminum and iron. These NFA variants are characterized using electron microscopy, neutron and X‐ray diffraction, and Mössbauer and X‐ray photoelectron spectroscopy to investigate their morphological, physical, and crystal‐structure properties. Operando experiments by X‐ray diffraction, Mössbauer spectroscopy, and galvanostatic intermittent titration have been also used to study the crystallographic transitions, electrochemical activity, and Li‐ion diffusivity upon lithium removal and uptake in the NFA cathodes. NFA compositions yield specific capacities of ≈200 mAh g−1, demonstrating reasonable rate capability and cycling stability with ≈80% capacity retention after 100 charge/discharge cycles. While this is an early stage of research, the potential that these cathodes could have as viable candidates in next‐generation cobalt‐free lithium‐ion batteries is highlighted here.
Cobalt has become a critical constraint on the supply chain of the Li‐ion battery industry due to the dependency of current Li‐ion batteries on the ever‐fluctuating cobalt prices. To overcome this cobalt conundrum, a new class of cobalt‐free layered cathodes with a general formula of LiNixFeyAlzO2 (x + y + z = 1) is introduced, termed as the lithium iron aluminum nickelate (NFA) class.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202002960</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6042-5295</orcidid><orcidid>https://orcid.org/0000-0002-5588-0696</orcidid><orcidid>https://orcid.org/0000-0002-1160-9159</orcidid><orcidid>https://orcid.org/0000-0002-3985-0278</orcidid><orcidid>https://orcid.org/0000000239850278</orcidid><orcidid>https://orcid.org/0000000211609159</orcidid><orcidid>https://orcid.org/0000000160066317</orcidid><orcidid>https://orcid.org/0000000255880696</orcidid><orcidid>https://orcid.org/000000024453910X</orcidid><orcidid>https://orcid.org/0000000251780487</orcidid><orcidid>https://orcid.org/0000000160425295</orcidid><orcidid>https://orcid.org/0000000297736799</orcidid><orcidid>https://orcid.org/0000000255611330</orcidid><orcidid>https://orcid.org/0000000268750057</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-08, Vol.32 (34), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1649238 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum Cathodes Cobalt Cobalt‐free cathodes Crystal structure Crystallography Electric vehicles ENERGY STORAGE Iron iron redox layered cathodes Lithium Lithium-ion batteries Materials science Mossbauer spectroscopy nickel‐rich materials Photoelectrons Sol-gel processes Spectrum analysis Supply chains Sustainability Titration X-ray diffraction |
title | Lithium Iron Aluminum Nickelate, LiNixFeyAlzO2—New Sustainable Cathodes for Next‐Generation Cobalt‐Free Li‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Iron%20Aluminum%20Nickelate,%20LiNixFeyAlzO2%E2%80%94New%20Sustainable%20Cathodes%20for%20Next%E2%80%90Generation%20Cobalt%E2%80%90Free%20Li%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Muralidharan,%20Nitin&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-08-01&rft.volume=32&rft.issue=34&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202002960&rft_dat=%3Cproquest_osti_%3E2436896137%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436896137&rft_id=info:pmid/&rfr_iscdi=true |