Data Assimilative Optimization of WSA Source Surface and Interface Radii using Particle Filtering

The Wang‐Sheeley‐Arge (WSA) model estimates solar wind speed and interplanetary magnetic field polarity in the inner heliosphere using global photospheric magnetic field maps. WSA employs the Potential Field Source Surface (PFSS) and Schatten Current Sheet (SCS) models to determine the Sun's gl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2020-05, Vol.18 (5), p.n/a
Hauptverfasser: Meadors, Grant David, Jones, Shaela I., Hickmann, Kyle S., Arge, Charles N., Godinez‐Vasquez, Humberto C., Henney, Carl J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Space Weather
container_volume 18
creator Meadors, Grant David
Jones, Shaela I.
Hickmann, Kyle S.
Arge, Charles N.
Godinez‐Vasquez, Humberto C.
Henney, Carl J.
description The Wang‐Sheeley‐Arge (WSA) model estimates solar wind speed and interplanetary magnetic field polarity in the inner heliosphere using global photospheric magnetic field maps. WSA employs the Potential Field Source Surface (PFSS) and Schatten Current Sheet (SCS) models to determine the Sun's global coronal magnetic field. The PFSS and SCS models are connected through two radial parameters, the source surface and interface radii, which specify the overlap region between the inner SCS and outer PFSS models. Though both radii values are adjustable, they have typically been fixed to 2.5 solar radii. Our work highlights how solar wind predictions improve when the radii are allowed to vary over time. Data assimilation using particle filtering (sequential Monte Carlo) is used to infer optimal values over a fixed time window. Solar wind model predictions and satellite observations are compared with a newly developed quality‐of‐agreement prediction metric. The agreement metric between the model and observations is assumed to correspond to the probability of the two key WSA model parameters, the source surface and interface radii, where the highest metric value implies the optimal radii. We find that the optimal particle filter values of solar radii can perform twice as well as standard values for an exploratory period during Carrington Rotation 1901, with these values also reducing nonphysical kinking effects seen in solar magnetic field lines. Data assimilation choices of input realization and time frame have implications for variation in the solar wind over time. We present this work's theoretical context and practical applications for prediction accuracy. Plain Language Summary The solar wind drives electromagnetic disturbances on the ground, which can cause satellite disruptions and many other adverse affects on human technology, so it is important to predict the solar wind variability accurately. For several decades, the space weather community has developed physical and empirical models to estimate the state of the solar wind. Some of the models make assumptions about the magnetic field topology of the Sun. We analyze satellite solar wind observations with different model parameter assumptions to help make more accurate predictions. Key Points Key Wang‐Sheeley‐Arge (WSA) model parameters were optimized to better predict solar wind speed and IMF polarity in the heliosphere New observation and model difference metric provides quantitative comparison between pre
doi_str_mv 10.1029/2020SW002464
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1648094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406925953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3711-b18f5394744f70210b60fba176aa941f0f50df66c45f070b4c3a6fbfa209673c3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhSMEEqWw8QMsWAmcHcepx6q0UKkSiIA6Wo5rg6s0KbYDKr8eV2HoxHT37j6d3r0kucRwi4HwOwIEyiUAoYweJQOcU5IWGYfjg_40OfN-vWdyQgeJvJdBorH3dmNrGeyXRk_bEMVPFG2DWoOW5RiVbeeURmXnjIxVNis0b4Lu1YtcWYs6b5t39CxdsKrWaGbruI-j8-TEyNrri786TN5m09fJY7p4ephPxotUZQXGaYVHJs84LSg1BRAMFQNTSVwwKTnFBkwOK8OYormBAiqqMslMZSQBzopMZcPkqr_b-mCFVzZo9aHaptEqCMzoCDiN0HUPbV372WkfxDp-1kRfglBgnOQ8zyJ101PKtd47bcTW2Y10O4FB7JMWh0lHnPT4t6317l9WlMtpNMxx9gumJ329</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406925953</pqid></control><display><type>article</type><title>Data Assimilative Optimization of WSA Source Surface and Interface Radii using Particle Filtering</title><source>Wiley Online Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Meadors, Grant David ; Jones, Shaela I. ; Hickmann, Kyle S. ; Arge, Charles N. ; Godinez‐Vasquez, Humberto C. ; Henney, Carl J.</creator><creatorcontrib>Meadors, Grant David ; Jones, Shaela I. ; Hickmann, Kyle S. ; Arge, Charles N. ; Godinez‐Vasquez, Humberto C. ; Henney, Carl J. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The Wang‐Sheeley‐Arge (WSA) model estimates solar wind speed and interplanetary magnetic field polarity in the inner heliosphere using global photospheric magnetic field maps. WSA employs the Potential Field Source Surface (PFSS) and Schatten Current Sheet (SCS) models to determine the Sun's global coronal magnetic field. The PFSS and SCS models are connected through two radial parameters, the source surface and interface radii, which specify the overlap region between the inner SCS and outer PFSS models. Though both radii values are adjustable, they have typically been fixed to 2.5 solar radii. Our work highlights how solar wind predictions improve when the radii are allowed to vary over time. Data assimilation using particle filtering (sequential Monte Carlo) is used to infer optimal values over a fixed time window. Solar wind model predictions and satellite observations are compared with a newly developed quality‐of‐agreement prediction metric. The agreement metric between the model and observations is assumed to correspond to the probability of the two key WSA model parameters, the source surface and interface radii, where the highest metric value implies the optimal radii. We find that the optimal particle filter values of solar radii can perform twice as well as standard values for an exploratory period during Carrington Rotation 1901, with these values also reducing nonphysical kinking effects seen in solar magnetic field lines. Data assimilation choices of input realization and time frame have implications for variation in the solar wind over time. We present this work's theoretical context and practical applications for prediction accuracy. Plain Language Summary The solar wind drives electromagnetic disturbances on the ground, which can cause satellite disruptions and many other adverse affects on human technology, so it is important to predict the solar wind variability accurately. For several decades, the space weather community has developed physical and empirical models to estimate the state of the solar wind. Some of the models make assumptions about the magnetic field topology of the Sun. We analyze satellite solar wind observations with different model parameter assumptions to help make more accurate predictions. Key Points Key Wang‐Sheeley‐Arge (WSA) model parameters were optimized to better predict solar wind speed and IMF polarity in the heliosphere New observation and model difference metric provides quantitative comparison between predictions and in situ measurements for model parameter selection Data assimilation with particle filtering allows updated optimization of the model parameters</description><identifier>ISSN: 1542-7390</identifier><identifier>ISSN: 1539-4964</identifier><identifier>EISSN: 1542-7390</identifier><identifier>DOI: 10.1029/2020SW002464</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Charged particles ; Computer simulation ; Coronal magnetic fields ; Current sheets ; Data Assimilation ; Data collection ; Empirical analysis ; Empirical models ; Filtration ; Heliosphere ; Interplanetary magnetic field ; Kinking ; Magnetic fields ; Optimization ; Parameters ; Photosphere ; Photospheric magnetic fields ; Polarity ; Potential fields ; Satellite observation ; Satellites ; Solar magnetic field ; solar physics ; Solar rotation ; Solar Wind ; Solar wind models ; Solar wind velocity ; Space weather ; Topology ; Wang‐Sheeley‐Arge ; Weather ; Wind observation ; Wind speed ; Wind variability ; Windows (intervals)</subject><ispartof>Space Weather, 2020-05, Vol.18 (5), p.n/a</ispartof><rights>2020. The Authors.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3711-b18f5394744f70210b60fba176aa941f0f50df66c45f070b4c3a6fbfa209673c3</citedby><cites>FETCH-LOGICAL-c3711-b18f5394744f70210b60fba176aa941f0f50df66c45f070b4c3a6fbfa209673c3</cites><orcidid>0000-0002-6038-6369 ; 0000-0001-7718-0407 ; 0000000177180407 ; 0000000171383481 ; 0000000152539575 ; 0000000260386369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020SW002464$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020SW002464$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,11542,27903,27904,45553,45554,46031,46455</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1648094$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Meadors, Grant David</creatorcontrib><creatorcontrib>Jones, Shaela I.</creatorcontrib><creatorcontrib>Hickmann, Kyle S.</creatorcontrib><creatorcontrib>Arge, Charles N.</creatorcontrib><creatorcontrib>Godinez‐Vasquez, Humberto C.</creatorcontrib><creatorcontrib>Henney, Carl J.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Data Assimilative Optimization of WSA Source Surface and Interface Radii using Particle Filtering</title><title>Space Weather</title><description>The Wang‐Sheeley‐Arge (WSA) model estimates solar wind speed and interplanetary magnetic field polarity in the inner heliosphere using global photospheric magnetic field maps. WSA employs the Potential Field Source Surface (PFSS) and Schatten Current Sheet (SCS) models to determine the Sun's global coronal magnetic field. The PFSS and SCS models are connected through two radial parameters, the source surface and interface radii, which specify the overlap region between the inner SCS and outer PFSS models. Though both radii values are adjustable, they have typically been fixed to 2.5 solar radii. Our work highlights how solar wind predictions improve when the radii are allowed to vary over time. Data assimilation using particle filtering (sequential Monte Carlo) is used to infer optimal values over a fixed time window. Solar wind model predictions and satellite observations are compared with a newly developed quality‐of‐agreement prediction metric. The agreement metric between the model and observations is assumed to correspond to the probability of the two key WSA model parameters, the source surface and interface radii, where the highest metric value implies the optimal radii. We find that the optimal particle filter values of solar radii can perform twice as well as standard values for an exploratory period during Carrington Rotation 1901, with these values also reducing nonphysical kinking effects seen in solar magnetic field lines. Data assimilation choices of input realization and time frame have implications for variation in the solar wind over time. We present this work's theoretical context and practical applications for prediction accuracy. Plain Language Summary The solar wind drives electromagnetic disturbances on the ground, which can cause satellite disruptions and many other adverse affects on human technology, so it is important to predict the solar wind variability accurately. For several decades, the space weather community has developed physical and empirical models to estimate the state of the solar wind. Some of the models make assumptions about the magnetic field topology of the Sun. We analyze satellite solar wind observations with different model parameter assumptions to help make more accurate predictions. Key Points Key Wang‐Sheeley‐Arge (WSA) model parameters were optimized to better predict solar wind speed and IMF polarity in the heliosphere New observation and model difference metric provides quantitative comparison between predictions and in situ measurements for model parameter selection Data assimilation with particle filtering allows updated optimization of the model parameters</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Charged particles</subject><subject>Computer simulation</subject><subject>Coronal magnetic fields</subject><subject>Current sheets</subject><subject>Data Assimilation</subject><subject>Data collection</subject><subject>Empirical analysis</subject><subject>Empirical models</subject><subject>Filtration</subject><subject>Heliosphere</subject><subject>Interplanetary magnetic field</subject><subject>Kinking</subject><subject>Magnetic fields</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Photosphere</subject><subject>Photospheric magnetic fields</subject><subject>Polarity</subject><subject>Potential fields</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Solar magnetic field</subject><subject>solar physics</subject><subject>Solar rotation</subject><subject>Solar Wind</subject><subject>Solar wind models</subject><subject>Solar wind velocity</subject><subject>Space weather</subject><subject>Topology</subject><subject>Wang‐Sheeley‐Arge</subject><subject>Weather</subject><subject>Wind observation</subject><subject>Wind speed</subject><subject>Wind variability</subject><subject>Windows (intervals)</subject><issn>1542-7390</issn><issn>1539-4964</issn><issn>1542-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kDFPwzAQhSMEEqWw8QMsWAmcHcepx6q0UKkSiIA6Wo5rg6s0KbYDKr8eV2HoxHT37j6d3r0kucRwi4HwOwIEyiUAoYweJQOcU5IWGYfjg_40OfN-vWdyQgeJvJdBorH3dmNrGeyXRk_bEMVPFG2DWoOW5RiVbeeURmXnjIxVNis0b4Lu1YtcWYs6b5t39CxdsKrWaGbruI-j8-TEyNrri786TN5m09fJY7p4ephPxotUZQXGaYVHJs84LSg1BRAMFQNTSVwwKTnFBkwOK8OYormBAiqqMslMZSQBzopMZcPkqr_b-mCFVzZo9aHaptEqCMzoCDiN0HUPbV372WkfxDp-1kRfglBgnOQ8zyJ101PKtd47bcTW2Y10O4FB7JMWh0lHnPT4t6317l9WlMtpNMxx9gumJ329</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Meadors, Grant David</creator><creator>Jones, Shaela I.</creator><creator>Hickmann, Kyle S.</creator><creator>Arge, Charles N.</creator><creator>Godinez‐Vasquez, Humberto C.</creator><creator>Henney, Carl J.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6038-6369</orcidid><orcidid>https://orcid.org/0000-0001-7718-0407</orcidid><orcidid>https://orcid.org/0000000177180407</orcidid><orcidid>https://orcid.org/0000000171383481</orcidid><orcidid>https://orcid.org/0000000152539575</orcidid><orcidid>https://orcid.org/0000000260386369</orcidid></search><sort><creationdate>202005</creationdate><title>Data Assimilative Optimization of WSA Source Surface and Interface Radii using Particle Filtering</title><author>Meadors, Grant David ; Jones, Shaela I. ; Hickmann, Kyle S. ; Arge, Charles N. ; Godinez‐Vasquez, Humberto C. ; Henney, Carl J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3711-b18f5394744f70210b60fba176aa941f0f50df66c45f070b4c3a6fbfa209673c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Charged particles</topic><topic>Computer simulation</topic><topic>Coronal magnetic fields</topic><topic>Current sheets</topic><topic>Data Assimilation</topic><topic>Data collection</topic><topic>Empirical analysis</topic><topic>Empirical models</topic><topic>Filtration</topic><topic>Heliosphere</topic><topic>Interplanetary magnetic field</topic><topic>Kinking</topic><topic>Magnetic fields</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Photosphere</topic><topic>Photospheric magnetic fields</topic><topic>Polarity</topic><topic>Potential fields</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Solar magnetic field</topic><topic>solar physics</topic><topic>Solar rotation</topic><topic>Solar Wind</topic><topic>Solar wind models</topic><topic>Solar wind velocity</topic><topic>Space weather</topic><topic>Topology</topic><topic>Wang‐Sheeley‐Arge</topic><topic>Weather</topic><topic>Wind observation</topic><topic>Wind speed</topic><topic>Wind variability</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meadors, Grant David</creatorcontrib><creatorcontrib>Jones, Shaela I.</creatorcontrib><creatorcontrib>Hickmann, Kyle S.</creatorcontrib><creatorcontrib>Arge, Charles N.</creatorcontrib><creatorcontrib>Godinez‐Vasquez, Humberto C.</creatorcontrib><creatorcontrib>Henney, Carl J.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Wiley Online Library</collection><collection>Wiley Online Library</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Space Weather</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meadors, Grant David</au><au>Jones, Shaela I.</au><au>Hickmann, Kyle S.</au><au>Arge, Charles N.</au><au>Godinez‐Vasquez, Humberto C.</au><au>Henney, Carl J.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Assimilative Optimization of WSA Source Surface and Interface Radii using Particle Filtering</atitle><jtitle>Space Weather</jtitle><date>2020-05</date><risdate>2020</risdate><volume>18</volume><issue>5</issue><epage>n/a</epage><issn>1542-7390</issn><issn>1539-4964</issn><eissn>1542-7390</eissn><abstract>The Wang‐Sheeley‐Arge (WSA) model estimates solar wind speed and interplanetary magnetic field polarity in the inner heliosphere using global photospheric magnetic field maps. WSA employs the Potential Field Source Surface (PFSS) and Schatten Current Sheet (SCS) models to determine the Sun's global coronal magnetic field. The PFSS and SCS models are connected through two radial parameters, the source surface and interface radii, which specify the overlap region between the inner SCS and outer PFSS models. Though both radii values are adjustable, they have typically been fixed to 2.5 solar radii. Our work highlights how solar wind predictions improve when the radii are allowed to vary over time. Data assimilation using particle filtering (sequential Monte Carlo) is used to infer optimal values over a fixed time window. Solar wind model predictions and satellite observations are compared with a newly developed quality‐of‐agreement prediction metric. The agreement metric between the model and observations is assumed to correspond to the probability of the two key WSA model parameters, the source surface and interface radii, where the highest metric value implies the optimal radii. We find that the optimal particle filter values of solar radii can perform twice as well as standard values for an exploratory period during Carrington Rotation 1901, with these values also reducing nonphysical kinking effects seen in solar magnetic field lines. Data assimilation choices of input realization and time frame have implications for variation in the solar wind over time. We present this work's theoretical context and practical applications for prediction accuracy. Plain Language Summary The solar wind drives electromagnetic disturbances on the ground, which can cause satellite disruptions and many other adverse affects on human technology, so it is important to predict the solar wind variability accurately. For several decades, the space weather community has developed physical and empirical models to estimate the state of the solar wind. Some of the models make assumptions about the magnetic field topology of the Sun. We analyze satellite solar wind observations with different model parameter assumptions to help make more accurate predictions. Key Points Key Wang‐Sheeley‐Arge (WSA) model parameters were optimized to better predict solar wind speed and IMF polarity in the heliosphere New observation and model difference metric provides quantitative comparison between predictions and in situ measurements for model parameter selection Data assimilation with particle filtering allows updated optimization of the model parameters</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2020SW002464</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6038-6369</orcidid><orcidid>https://orcid.org/0000-0001-7718-0407</orcidid><orcidid>https://orcid.org/0000000177180407</orcidid><orcidid>https://orcid.org/0000000171383481</orcidid><orcidid>https://orcid.org/0000000152539575</orcidid><orcidid>https://orcid.org/0000000260386369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1542-7390
ispartof Space Weather, 2020-05, Vol.18 (5), p.n/a
issn 1542-7390
1539-4964
1542-7390
language eng
recordid cdi_osti_scitechconnect_1648094
source Wiley Online Library; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects ASTRONOMY AND ASTROPHYSICS
Charged particles
Computer simulation
Coronal magnetic fields
Current sheets
Data Assimilation
Data collection
Empirical analysis
Empirical models
Filtration
Heliosphere
Interplanetary magnetic field
Kinking
Magnetic fields
Optimization
Parameters
Photosphere
Photospheric magnetic fields
Polarity
Potential fields
Satellite observation
Satellites
Solar magnetic field
solar physics
Solar rotation
Solar Wind
Solar wind models
Solar wind velocity
Space weather
Topology
Wang‐Sheeley‐Arge
Weather
Wind observation
Wind speed
Wind variability
Windows (intervals)
title Data Assimilative Optimization of WSA Source Surface and Interface Radii using Particle Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Assimilative%20Optimization%20of%20WSA%20Source%20Surface%20and%20Interface%20Radii%20using%20Particle%20Filtering&rft.jtitle=Space%20Weather&rft.au=Meadors,%20Grant%20David&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2020-05&rft.volume=18&rft.issue=5&rft.epage=n/a&rft.issn=1542-7390&rft.eissn=1542-7390&rft_id=info:doi/10.1029/2020SW002464&rft_dat=%3Cproquest_osti_%3E2406925953%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406925953&rft_id=info:pmid/&rfr_iscdi=true