Mixed Ionic–Electronic Conductor of Perovskite LixLayMO3−δ toward Carbon‐Free Cathode for Reversible Lithium–Air Batteries
Mixed ionic–electronic conductors (MIECs) can play a pivotal role in achieving high energies and power densities in rechargeable batteries owing to their ability to simultaneously conduct ions and electrons. Herein, a new strategy is proposed wherein late 3d transition metals (TMs) are substituted i...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2020-10, Vol.10 (38), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 38 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 10 |
creator | Ma, Sang Bok Kwon, Hyuk Jae Kim, Mokwon Bak, Seong‐Min Lee, Hyunpyo Ehrlich, Steven N. Cho, Jeong‐Ju Im, Dongmin Seo, Dong‐Hwa |
description | Mixed ionic–electronic conductors (MIECs) can play a pivotal role in achieving high energies and power densities in rechargeable batteries owing to their ability to simultaneously conduct ions and electrons. Herein, a new strategy is proposed wherein late 3d transition metals (TMs) are substituted into a perovskite Li‐ion conductor to transform it into a Li‐containing MIEC. First‐principles calculations show that perovskite LixLayMO3 with late 3d TMs have a low oxygen vacancy formation energy, implying high electron carrier concentrations corresponding to high electronic conductivity. The activation barriers for Li diffusion in LixLayMO3 (M = Ti, Cr, Mn, Fe, and Co) are below 0.411 eV, resulting in high Li‐ion conductivity. The designed perovskites of Li0.34La0.55MnO3−δ experimentally prove to have high electronic (2.04 × 10−3 S cm−1) and Li‐ion (8.53 × 10−5 S cm−1) conductivities, and when applied in a carbon‐free cathode of a Li–air cell, they deliver superior reversibility at 0.21 mAh cm−2 over 100 charge/discharge cycles while avoiding the degradation associated with carbonaceous materials. This strategy enables the effective design of Li‐conducting MIEC and reversible Li–air batteries.
A new class of mixed ionic–electronic conductors (MIECs) is designed for a carbon‐free cathode of a Li–air cell. The oxygen vacancy formation energies and Li diffusion barriers of the perovskites are calculated to estimate the electronic and Li‐ion conductivities, respectively. The Li–air cell with an MIEC cathode delivers superior reversibility due to its high electronic and Li‐ion conductivities. |
doi_str_mv | 10.1002/aenm.202001767 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1647565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450125647</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2157-5e11ced3df93db470f1b699dff96a8a148df732abaac8bd56bb4463f4df482653</originalsourceid><addsrcrecordid>eNo9kctKAzEUhgdRUNSt66Dram6TmVnWUi_QqoiuQ2ZyQqPtRJNU7U5w41L0VXwOH6JPYmqlZ3POD9-58WfZHsGHBGN6pKCdHFJMMSaFKNayLSII74iS4_VVzehmthvCHU7BK4IZ28rehvYFNDp3rW3mr1_9MTTRLwTquVZPm-g8cgZdgXdP4d5GQAP7MlCz4SWbv3_-fKPonpXXqKd87dr568eJB0gqjpwGZFL3NTyBD7YeL1rjyE4naU_XenSsYgRvIexkG0aNA-z-5-3s9qR_0zvrDC5Pz3vdQcdRkhedHAhpQDNtKqZrXmBDalFV2phKqFIRXmpTMKpqpZqy1rmoa84FM1wbXlKRs-1sfznXhWhlaNI3zahxbZt-lkTwIv-DDpbQg3ePUwhR3rmpb9NdkvIcE5onMFHVknq2Y5jJB28nys8kwXLhhly4IVduyG7_YrhS7Be-94Y8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450125647</pqid></control><display><type>article</type><title>Mixed Ionic–Electronic Conductor of Perovskite LixLayMO3−δ toward Carbon‐Free Cathode for Reversible Lithium–Air Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Sang Bok ; Kwon, Hyuk Jae ; Kim, Mokwon ; Bak, Seong‐Min ; Lee, Hyunpyo ; Ehrlich, Steven N. ; Cho, Jeong‐Ju ; Im, Dongmin ; Seo, Dong‐Hwa</creator><creatorcontrib>Ma, Sang Bok ; Kwon, Hyuk Jae ; Kim, Mokwon ; Bak, Seong‐Min ; Lee, Hyunpyo ; Ehrlich, Steven N. ; Cho, Jeong‐Ju ; Im, Dongmin ; Seo, Dong‐Hwa ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>Mixed ionic–electronic conductors (MIECs) can play a pivotal role in achieving high energies and power densities in rechargeable batteries owing to their ability to simultaneously conduct ions and electrons. Herein, a new strategy is proposed wherein late 3d transition metals (TMs) are substituted into a perovskite Li‐ion conductor to transform it into a Li‐containing MIEC. First‐principles calculations show that perovskite LixLayMO3 with late 3d TMs have a low oxygen vacancy formation energy, implying high electron carrier concentrations corresponding to high electronic conductivity. The activation barriers for Li diffusion in LixLayMO3 (M = Ti, Cr, Mn, Fe, and Co) are below 0.411 eV, resulting in high Li‐ion conductivity. The designed perovskites of Li0.34La0.55MnO3−δ experimentally prove to have high electronic (2.04 × 10−3 S cm−1) and Li‐ion (8.53 × 10−5 S cm−1) conductivities, and when applied in a carbon‐free cathode of a Li–air cell, they deliver superior reversibility at 0.21 mAh cm−2 over 100 charge/discharge cycles while avoiding the degradation associated with carbonaceous materials. This strategy enables the effective design of Li‐conducting MIEC and reversible Li–air batteries.
A new class of mixed ionic–electronic conductors (MIECs) is designed for a carbon‐free cathode of a Li–air cell. The oxygen vacancy formation energies and Li diffusion barriers of the perovskites are calculated to estimate the electronic and Li‐ion conductivities, respectively. The Li–air cell with an MIEC cathode delivers superior reversibility due to its high electronic and Li‐ion conductivities.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202001767</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Carbon ; Carbonaceous materials ; Carrier density ; Cathodes ; Conduction ; Conductivity ; Conductors ; Diffusion barriers ; Free energy ; Heat of formation ; Lithium ; lithium diffusion barriers ; lithium-air batteries ; Manganese ; MATERIALS SCIENCE ; Metal air batteries ; mixed ionic-electronic conductors ; Perovskites ; Rechargeable batteries ; Titanium ; Transition metals</subject><ispartof>Advanced energy materials, 2020-10, Vol.10 (38), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7200-7186 ; 0000000272007186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202001767$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202001767$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1647565$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Sang Bok</creatorcontrib><creatorcontrib>Kwon, Hyuk Jae</creatorcontrib><creatorcontrib>Kim, Mokwon</creatorcontrib><creatorcontrib>Bak, Seong‐Min</creatorcontrib><creatorcontrib>Lee, Hyunpyo</creatorcontrib><creatorcontrib>Ehrlich, Steven N.</creatorcontrib><creatorcontrib>Cho, Jeong‐Ju</creatorcontrib><creatorcontrib>Im, Dongmin</creatorcontrib><creatorcontrib>Seo, Dong‐Hwa</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>Mixed Ionic–Electronic Conductor of Perovskite LixLayMO3−δ toward Carbon‐Free Cathode for Reversible Lithium–Air Batteries</title><title>Advanced energy materials</title><description>Mixed ionic–electronic conductors (MIECs) can play a pivotal role in achieving high energies and power densities in rechargeable batteries owing to their ability to simultaneously conduct ions and electrons. Herein, a new strategy is proposed wherein late 3d transition metals (TMs) are substituted into a perovskite Li‐ion conductor to transform it into a Li‐containing MIEC. First‐principles calculations show that perovskite LixLayMO3 with late 3d TMs have a low oxygen vacancy formation energy, implying high electron carrier concentrations corresponding to high electronic conductivity. The activation barriers for Li diffusion in LixLayMO3 (M = Ti, Cr, Mn, Fe, and Co) are below 0.411 eV, resulting in high Li‐ion conductivity. The designed perovskites of Li0.34La0.55MnO3−δ experimentally prove to have high electronic (2.04 × 10−3 S cm−1) and Li‐ion (8.53 × 10−5 S cm−1) conductivities, and when applied in a carbon‐free cathode of a Li–air cell, they deliver superior reversibility at 0.21 mAh cm−2 over 100 charge/discharge cycles while avoiding the degradation associated with carbonaceous materials. This strategy enables the effective design of Li‐conducting MIEC and reversible Li–air batteries.
A new class of mixed ionic–electronic conductors (MIECs) is designed for a carbon‐free cathode of a Li–air cell. The oxygen vacancy formation energies and Li diffusion barriers of the perovskites are calculated to estimate the electronic and Li‐ion conductivities, respectively. The Li–air cell with an MIEC cathode delivers superior reversibility due to its high electronic and Li‐ion conductivities.</description><subject>Batteries</subject><subject>Carbon</subject><subject>Carbonaceous materials</subject><subject>Carrier density</subject><subject>Cathodes</subject><subject>Conduction</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Diffusion barriers</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Lithium</subject><subject>lithium diffusion barriers</subject><subject>lithium-air batteries</subject><subject>Manganese</subject><subject>MATERIALS SCIENCE</subject><subject>Metal air batteries</subject><subject>mixed ionic-electronic conductors</subject><subject>Perovskites</subject><subject>Rechargeable batteries</subject><subject>Titanium</subject><subject>Transition metals</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kctKAzEUhgdRUNSt66Dram6TmVnWUi_QqoiuQ2ZyQqPtRJNU7U5w41L0VXwOH6JPYmqlZ3POD9-58WfZHsGHBGN6pKCdHFJMMSaFKNayLSII74iS4_VVzehmthvCHU7BK4IZ28rehvYFNDp3rW3mr1_9MTTRLwTquVZPm-g8cgZdgXdP4d5GQAP7MlCz4SWbv3_-fKPonpXXqKd87dr568eJB0gqjpwGZFL3NTyBD7YeL1rjyE4naU_XenSsYgRvIexkG0aNA-z-5-3s9qR_0zvrDC5Pz3vdQcdRkhedHAhpQDNtKqZrXmBDalFV2phKqFIRXmpTMKpqpZqy1rmoa84FM1wbXlKRs-1sfznXhWhlaNI3zahxbZt-lkTwIv-DDpbQg3ePUwhR3rmpb9NdkvIcE5onMFHVknq2Y5jJB28nys8kwXLhhly4IVduyG7_YrhS7Be-94Y8</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ma, Sang Bok</creator><creator>Kwon, Hyuk Jae</creator><creator>Kim, Mokwon</creator><creator>Bak, Seong‐Min</creator><creator>Lee, Hyunpyo</creator><creator>Ehrlich, Steven N.</creator><creator>Cho, Jeong‐Ju</creator><creator>Im, Dongmin</creator><creator>Seo, Dong‐Hwa</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7200-7186</orcidid><orcidid>https://orcid.org/0000000272007186</orcidid></search><sort><creationdate>20201001</creationdate><title>Mixed Ionic–Electronic Conductor of Perovskite LixLayMO3−δ toward Carbon‐Free Cathode for Reversible Lithium–Air Batteries</title><author>Ma, Sang Bok ; Kwon, Hyuk Jae ; Kim, Mokwon ; Bak, Seong‐Min ; Lee, Hyunpyo ; Ehrlich, Steven N. ; Cho, Jeong‐Ju ; Im, Dongmin ; Seo, Dong‐Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2157-5e11ced3df93db470f1b699dff96a8a148df732abaac8bd56bb4463f4df482653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Carbon</topic><topic>Carbonaceous materials</topic><topic>Carrier density</topic><topic>Cathodes</topic><topic>Conduction</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Diffusion barriers</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Lithium</topic><topic>lithium diffusion barriers</topic><topic>lithium-air batteries</topic><topic>Manganese</topic><topic>MATERIALS SCIENCE</topic><topic>Metal air batteries</topic><topic>mixed ionic-electronic conductors</topic><topic>Perovskites</topic><topic>Rechargeable batteries</topic><topic>Titanium</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Sang Bok</creatorcontrib><creatorcontrib>Kwon, Hyuk Jae</creatorcontrib><creatorcontrib>Kim, Mokwon</creatorcontrib><creatorcontrib>Bak, Seong‐Min</creatorcontrib><creatorcontrib>Lee, Hyunpyo</creatorcontrib><creatorcontrib>Ehrlich, Steven N.</creatorcontrib><creatorcontrib>Cho, Jeong‐Ju</creatorcontrib><creatorcontrib>Im, Dongmin</creatorcontrib><creatorcontrib>Seo, Dong‐Hwa</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Sang Bok</au><au>Kwon, Hyuk Jae</au><au>Kim, Mokwon</au><au>Bak, Seong‐Min</au><au>Lee, Hyunpyo</au><au>Ehrlich, Steven N.</au><au>Cho, Jeong‐Ju</au><au>Im, Dongmin</au><au>Seo, Dong‐Hwa</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Ionic–Electronic Conductor of Perovskite LixLayMO3−δ toward Carbon‐Free Cathode for Reversible Lithium–Air Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>10</volume><issue>38</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Mixed ionic–electronic conductors (MIECs) can play a pivotal role in achieving high energies and power densities in rechargeable batteries owing to their ability to simultaneously conduct ions and electrons. Herein, a new strategy is proposed wherein late 3d transition metals (TMs) are substituted into a perovskite Li‐ion conductor to transform it into a Li‐containing MIEC. First‐principles calculations show that perovskite LixLayMO3 with late 3d TMs have a low oxygen vacancy formation energy, implying high electron carrier concentrations corresponding to high electronic conductivity. The activation barriers for Li diffusion in LixLayMO3 (M = Ti, Cr, Mn, Fe, and Co) are below 0.411 eV, resulting in high Li‐ion conductivity. The designed perovskites of Li0.34La0.55MnO3−δ experimentally prove to have high electronic (2.04 × 10−3 S cm−1) and Li‐ion (8.53 × 10−5 S cm−1) conductivities, and when applied in a carbon‐free cathode of a Li–air cell, they deliver superior reversibility at 0.21 mAh cm−2 over 100 charge/discharge cycles while avoiding the degradation associated with carbonaceous materials. This strategy enables the effective design of Li‐conducting MIEC and reversible Li–air batteries.
A new class of mixed ionic–electronic conductors (MIECs) is designed for a carbon‐free cathode of a Li–air cell. The oxygen vacancy formation energies and Li diffusion barriers of the perovskites are calculated to estimate the electronic and Li‐ion conductivities, respectively. The Li–air cell with an MIEC cathode delivers superior reversibility due to its high electronic and Li‐ion conductivities.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202001767</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7200-7186</orcidid><orcidid>https://orcid.org/0000000272007186</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2020-10, Vol.10 (38), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1647565 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Batteries Carbon Carbonaceous materials Carrier density Cathodes Conduction Conductivity Conductors Diffusion barriers Free energy Heat of formation Lithium lithium diffusion barriers lithium-air batteries Manganese MATERIALS SCIENCE Metal air batteries mixed ionic-electronic conductors Perovskites Rechargeable batteries Titanium Transition metals |
title | Mixed Ionic–Electronic Conductor of Perovskite LixLayMO3−δ toward Carbon‐Free Cathode for Reversible Lithium–Air Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Ionic%E2%80%93Electronic%20Conductor%20of%20Perovskite%20LixLayMO3%E2%88%92%CE%B4%20toward%20Carbon%E2%80%90Free%20Cathode%20for%20Reversible%20Lithium%E2%80%93Air%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Ma,%20Sang%20Bok&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2020-10-01&rft.volume=10&rft.issue=38&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202001767&rft_dat=%3Cproquest_osti_%3E2450125647%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450125647&rft_id=info:pmid/&rfr_iscdi=true |