Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics
Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2020-07, Vol.59 (31), p.13004-13012 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13012 |
---|---|
container_issue | 31 |
container_start_page | 13004 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 59 |
creator | Park, Sang Kyu Sun, Hong Chung, Hyunjoong Patel, Bijal B. Zhang, Fengjiao Davies, Daniel W. Woods, Toby J. Zhao, Kejie Diao, Ying |
description | Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (ϵ) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ>0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications.
Single crystals of a super‐ and ferroelastic organic semiconductor were harnessed to fabricate ultraflexible single‐crystal electronic devices. At a strain greater than 13 %, the charge carrier mobility of the 6,13‐bis(triisopropylsilylethynyl)pentacene crystals remains above 70 % of that of the unstrained crystal because of mechanically induced cooperative structural transitions. |
doi_str_mv | 10.1002/anie.202004083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1644105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395606110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5033-fd6066e77a05d36de7d2bd2d2224655b55e58d1d1f6f6e1bc5997f0569a664293</originalsourceid><addsrcrecordid>eNqFkbtOIzEUhq3VrjbAbkuJRrsNTYLvM1OiKEAkBEWgtjz2mWDkjIM9IzYdj8Az8iQ4CheJZqtziu98-o9-hA4JnhCM6YnuHEwophhzXLFvaI8ISsasLNn3vHPGxmUlyAjtp3Sf-arC8icaMco4lVTuIbUY1hBfnp4L3dniDGIM4HXqnSmu4zLbTbGAlTOhs4PpQ0xFG2Jx6_uoWw__XOOhWLhu6SE7pnGTeu2LmQfTx5CP0y_0o9U-we-3eYBuz2Y304vx5fX5fHp6OTYC55CtlVhKKEuNhWXSQmlpY6mllHIpRCMEiMoSS1rZSiCNEXVdtljIWkvJac0O0J-dN-TsKhnXg7nLqbucRBHJOcEiQ8c7aB3DwwCpVyuXDHivOwhDUpTVIucgBGf07xf0Pgyxyy8oyqkQgmPJMzXZUSaGlCK0ah3dSseNIlht-1HbftRHP_ng6E07NCuwH_h7IRmod8Cj87D5j06dXs1nn_JX-PudRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425554064</pqid></control><display><type>article</type><title>Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics</title><source>Wiley Journals</source><creator>Park, Sang Kyu ; Sun, Hong ; Chung, Hyunjoong ; Patel, Bijal B. ; Zhang, Fengjiao ; Davies, Daniel W. ; Woods, Toby J. ; Zhao, Kejie ; Diao, Ying</creator><creatorcontrib>Park, Sang Kyu ; Sun, Hong ; Chung, Hyunjoong ; Patel, Bijal B. ; Zhang, Fengjiao ; Davies, Daniel W. ; Woods, Toby J. ; Zhao, Kejie ; Diao, Ying ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (ϵ) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ>0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications.
Single crystals of a super‐ and ferroelastic organic semiconductor were harnessed to fabricate ultraflexible single‐crystal electronic devices. At a strain greater than 13 %, the charge carrier mobility of the 6,13‐bis(triisopropylsilylethynyl)pentacene crystals remains above 70 % of that of the unstrained crystal because of mechanically induced cooperative structural transitions.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202004083</identifier><identifier>PMID: 32342626</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bending machines ; Carrier mobility ; Charge transport ; Crystal structure ; Crystals ; Current carriers ; Electronic devices ; Electronic equipment ; Electronics ; Electronics industry ; Ferroelasticity ; Molecular electronics ; Organic semiconductors ; phase transitions ; polymorphism ; Robotics ; Semiconductors ; Single crystals ; Superelasticity ; Transport properties</subject><ispartof>Angewandte Chemie (International ed.), 2020-07, Vol.59 (31), p.13004-13012</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5033-fd6066e77a05d36de7d2bd2d2224655b55e58d1d1f6f6e1bc5997f0569a664293</citedby><cites>FETCH-LOGICAL-c5033-fd6066e77a05d36de7d2bd2d2224655b55e58d1d1f6f6e1bc5997f0569a664293</cites><orcidid>0000-0002-3586-7400 ; 0000-0002-8984-0051 ; 0000-0001-5030-7412 ; 0000-0002-1184-7720 ; 0000000289840051 ; 0000000150307412 ; 0000000211847720 ; 0000000235867400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202004083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202004083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32342626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1644105$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Sang Kyu</creatorcontrib><creatorcontrib>Sun, Hong</creatorcontrib><creatorcontrib>Chung, Hyunjoong</creatorcontrib><creatorcontrib>Patel, Bijal B.</creatorcontrib><creatorcontrib>Zhang, Fengjiao</creatorcontrib><creatorcontrib>Davies, Daniel W.</creatorcontrib><creatorcontrib>Woods, Toby J.</creatorcontrib><creatorcontrib>Zhao, Kejie</creatorcontrib><creatorcontrib>Diao, Ying</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (ϵ) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ>0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications.
Single crystals of a super‐ and ferroelastic organic semiconductor were harnessed to fabricate ultraflexible single‐crystal electronic devices. At a strain greater than 13 %, the charge carrier mobility of the 6,13‐bis(triisopropylsilylethynyl)pentacene crystals remains above 70 % of that of the unstrained crystal because of mechanically induced cooperative structural transitions.</description><subject>Bending machines</subject><subject>Carrier mobility</subject><subject>Charge transport</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Electronics</subject><subject>Electronics industry</subject><subject>Ferroelasticity</subject><subject>Molecular electronics</subject><subject>Organic semiconductors</subject><subject>phase transitions</subject><subject>polymorphism</subject><subject>Robotics</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Superelasticity</subject><subject>Transport properties</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOIzEUhq3VrjbAbkuJRrsNTYLvM1OiKEAkBEWgtjz2mWDkjIM9IzYdj8Az8iQ4CheJZqtziu98-o9-hA4JnhCM6YnuHEwophhzXLFvaI8ISsasLNn3vHPGxmUlyAjtp3Sf-arC8icaMco4lVTuIbUY1hBfnp4L3dniDGIM4HXqnSmu4zLbTbGAlTOhs4PpQ0xFG2Jx6_uoWw__XOOhWLhu6SE7pnGTeu2LmQfTx5CP0y_0o9U-we-3eYBuz2Y304vx5fX5fHp6OTYC55CtlVhKKEuNhWXSQmlpY6mllHIpRCMEiMoSS1rZSiCNEXVdtljIWkvJac0O0J-dN-TsKhnXg7nLqbucRBHJOcEiQ8c7aB3DwwCpVyuXDHivOwhDUpTVIucgBGf07xf0Pgyxyy8oyqkQgmPJMzXZUSaGlCK0ah3dSseNIlht-1HbftRHP_ng6E07NCuwH_h7IRmod8Cj87D5j06dXs1nn_JX-PudRg</recordid><startdate>20200727</startdate><enddate>20200727</enddate><creator>Park, Sang Kyu</creator><creator>Sun, Hong</creator><creator>Chung, Hyunjoong</creator><creator>Patel, Bijal B.</creator><creator>Zhang, Fengjiao</creator><creator>Davies, Daniel W.</creator><creator>Woods, Toby J.</creator><creator>Zhao, Kejie</creator><creator>Diao, Ying</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3586-7400</orcidid><orcidid>https://orcid.org/0000-0002-8984-0051</orcidid><orcidid>https://orcid.org/0000-0001-5030-7412</orcidid><orcidid>https://orcid.org/0000-0002-1184-7720</orcidid><orcidid>https://orcid.org/0000000289840051</orcidid><orcidid>https://orcid.org/0000000150307412</orcidid><orcidid>https://orcid.org/0000000211847720</orcidid><orcidid>https://orcid.org/0000000235867400</orcidid></search><sort><creationdate>20200727</creationdate><title>Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics</title><author>Park, Sang Kyu ; Sun, Hong ; Chung, Hyunjoong ; Patel, Bijal B. ; Zhang, Fengjiao ; Davies, Daniel W. ; Woods, Toby J. ; Zhao, Kejie ; Diao, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5033-fd6066e77a05d36de7d2bd2d2224655b55e58d1d1f6f6e1bc5997f0569a664293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bending machines</topic><topic>Carrier mobility</topic><topic>Charge transport</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Electronics</topic><topic>Electronics industry</topic><topic>Ferroelasticity</topic><topic>Molecular electronics</topic><topic>Organic semiconductors</topic><topic>phase transitions</topic><topic>polymorphism</topic><topic>Robotics</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Superelasticity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sang Kyu</creatorcontrib><creatorcontrib>Sun, Hong</creatorcontrib><creatorcontrib>Chung, Hyunjoong</creatorcontrib><creatorcontrib>Patel, Bijal B.</creatorcontrib><creatorcontrib>Zhang, Fengjiao</creatorcontrib><creatorcontrib>Davies, Daniel W.</creatorcontrib><creatorcontrib>Woods, Toby J.</creatorcontrib><creatorcontrib>Zhao, Kejie</creatorcontrib><creatorcontrib>Diao, Ying</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sang Kyu</au><au>Sun, Hong</au><au>Chung, Hyunjoong</au><au>Patel, Bijal B.</au><au>Zhang, Fengjiao</au><au>Davies, Daniel W.</au><au>Woods, Toby J.</au><au>Zhao, Kejie</au><au>Diao, Ying</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-07-27</date><risdate>2020</risdate><volume>59</volume><issue>31</issue><spage>13004</spage><epage>13012</epage><pages>13004-13012</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (ϵ) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ>0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications.
Single crystals of a super‐ and ferroelastic organic semiconductor were harnessed to fabricate ultraflexible single‐crystal electronic devices. At a strain greater than 13 %, the charge carrier mobility of the 6,13‐bis(triisopropylsilylethynyl)pentacene crystals remains above 70 % of that of the unstrained crystal because of mechanically induced cooperative structural transitions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32342626</pmid><doi>10.1002/anie.202004083</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-3586-7400</orcidid><orcidid>https://orcid.org/0000-0002-8984-0051</orcidid><orcidid>https://orcid.org/0000-0001-5030-7412</orcidid><orcidid>https://orcid.org/0000-0002-1184-7720</orcidid><orcidid>https://orcid.org/0000000289840051</orcidid><orcidid>https://orcid.org/0000000150307412</orcidid><orcidid>https://orcid.org/0000000211847720</orcidid><orcidid>https://orcid.org/0000000235867400</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2020-07, Vol.59 (31), p.13004-13012 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_1644105 |
source | Wiley Journals |
subjects | Bending machines Carrier mobility Charge transport Crystal structure Crystals Current carriers Electronic devices Electronic equipment Electronics Electronics industry Ferroelasticity Molecular electronics Organic semiconductors phase transitions polymorphism Robotics Semiconductors Single crystals Superelasticity Transport properties |
title | Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%E2%80%90%20and%20Ferroelastic%20Organic%20Semiconductors%20for%20Ultraflexible%20Single%E2%80%90Crystal%20Electronics&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Park,%20Sang%20Kyu&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-07-27&rft.volume=59&rft.issue=31&rft.spage=13004&rft.epage=13012&rft.pages=13004-13012&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202004083&rft_dat=%3Cproquest_osti_%3E2395606110%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425554064&rft_id=info:pmid/32342626&rfr_iscdi=true |