Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics

Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2020-07, Vol.59 (31), p.13004-13012
Hauptverfasser: Park, Sang Kyu, Sun, Hong, Chung, Hyunjoong, Patel, Bijal B., Zhang, Fengjiao, Davies, Daniel W., Woods, Toby J., Zhao, Kejie, Diao, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13012
container_issue 31
container_start_page 13004
container_title Angewandte Chemie (International ed.)
container_volume 59
creator Park, Sang Kyu
Sun, Hong
Chung, Hyunjoong
Patel, Bijal B.
Zhang, Fengjiao
Davies, Daniel W.
Woods, Toby J.
Zhao, Kejie
Diao, Ying
description Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (ϵ) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ>0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications. Single crystals of a super‐ and ferroelastic organic semiconductor were harnessed to fabricate ultraflexible single‐crystal electronic devices. At a strain greater than 13 %, the charge carrier mobility of the 6,13‐bis(triisopropylsilylethynyl)pentacene crystals remains above 70 % of that of the unstrained crystal because of mechanically induced cooperative structural transitions.
doi_str_mv 10.1002/anie.202004083
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1644105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395606110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5033-fd6066e77a05d36de7d2bd2d2224655b55e58d1d1f6f6e1bc5997f0569a664293</originalsourceid><addsrcrecordid>eNqFkbtOIzEUhq3VrjbAbkuJRrsNTYLvM1OiKEAkBEWgtjz2mWDkjIM9IzYdj8Az8iQ4CheJZqtziu98-o9-hA4JnhCM6YnuHEwophhzXLFvaI8ISsasLNn3vHPGxmUlyAjtp3Sf-arC8icaMco4lVTuIbUY1hBfnp4L3dniDGIM4HXqnSmu4zLbTbGAlTOhs4PpQ0xFG2Jx6_uoWw__XOOhWLhu6SE7pnGTeu2LmQfTx5CP0y_0o9U-we-3eYBuz2Y304vx5fX5fHp6OTYC55CtlVhKKEuNhWXSQmlpY6mllHIpRCMEiMoSS1rZSiCNEXVdtljIWkvJac0O0J-dN-TsKhnXg7nLqbucRBHJOcEiQ8c7aB3DwwCpVyuXDHivOwhDUpTVIucgBGf07xf0Pgyxyy8oyqkQgmPJMzXZUSaGlCK0ah3dSseNIlht-1HbftRHP_ng6E07NCuwH_h7IRmod8Cj87D5j06dXs1nn_JX-PudRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425554064</pqid></control><display><type>article</type><title>Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics</title><source>Wiley Journals</source><creator>Park, Sang Kyu ; Sun, Hong ; Chung, Hyunjoong ; Patel, Bijal B. ; Zhang, Fengjiao ; Davies, Daniel W. ; Woods, Toby J. ; Zhao, Kejie ; Diao, Ying</creator><creatorcontrib>Park, Sang Kyu ; Sun, Hong ; Chung, Hyunjoong ; Patel, Bijal B. ; Zhang, Fengjiao ; Davies, Daniel W. ; Woods, Toby J. ; Zhao, Kejie ; Diao, Ying ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (ϵ) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ&gt;0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications. Single crystals of a super‐ and ferroelastic organic semiconductor were harnessed to fabricate ultraflexible single‐crystal electronic devices. At a strain greater than 13 %, the charge carrier mobility of the 6,13‐bis(triisopropylsilylethynyl)pentacene crystals remains above 70 % of that of the unstrained crystal because of mechanically induced cooperative structural transitions.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202004083</identifier><identifier>PMID: 32342626</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bending machines ; Carrier mobility ; Charge transport ; Crystal structure ; Crystals ; Current carriers ; Electronic devices ; Electronic equipment ; Electronics ; Electronics industry ; Ferroelasticity ; Molecular electronics ; Organic semiconductors ; phase transitions ; polymorphism ; Robotics ; Semiconductors ; Single crystals ; Superelasticity ; Transport properties</subject><ispartof>Angewandte Chemie (International ed.), 2020-07, Vol.59 (31), p.13004-13012</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5033-fd6066e77a05d36de7d2bd2d2224655b55e58d1d1f6f6e1bc5997f0569a664293</citedby><cites>FETCH-LOGICAL-c5033-fd6066e77a05d36de7d2bd2d2224655b55e58d1d1f6f6e1bc5997f0569a664293</cites><orcidid>0000-0002-3586-7400 ; 0000-0002-8984-0051 ; 0000-0001-5030-7412 ; 0000-0002-1184-7720 ; 0000000289840051 ; 0000000150307412 ; 0000000211847720 ; 0000000235867400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202004083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202004083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32342626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1644105$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Sang Kyu</creatorcontrib><creatorcontrib>Sun, Hong</creatorcontrib><creatorcontrib>Chung, Hyunjoong</creatorcontrib><creatorcontrib>Patel, Bijal B.</creatorcontrib><creatorcontrib>Zhang, Fengjiao</creatorcontrib><creatorcontrib>Davies, Daniel W.</creatorcontrib><creatorcontrib>Woods, Toby J.</creatorcontrib><creatorcontrib>Zhao, Kejie</creatorcontrib><creatorcontrib>Diao, Ying</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (ϵ) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ&gt;0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications. Single crystals of a super‐ and ferroelastic organic semiconductor were harnessed to fabricate ultraflexible single‐crystal electronic devices. At a strain greater than 13 %, the charge carrier mobility of the 6,13‐bis(triisopropylsilylethynyl)pentacene crystals remains above 70 % of that of the unstrained crystal because of mechanically induced cooperative structural transitions.</description><subject>Bending machines</subject><subject>Carrier mobility</subject><subject>Charge transport</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Current carriers</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Electronics</subject><subject>Electronics industry</subject><subject>Ferroelasticity</subject><subject>Molecular electronics</subject><subject>Organic semiconductors</subject><subject>phase transitions</subject><subject>polymorphism</subject><subject>Robotics</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Superelasticity</subject><subject>Transport properties</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkbtOIzEUhq3VrjbAbkuJRrsNTYLvM1OiKEAkBEWgtjz2mWDkjIM9IzYdj8Az8iQ4CheJZqtziu98-o9-hA4JnhCM6YnuHEwophhzXLFvaI8ISsasLNn3vHPGxmUlyAjtp3Sf-arC8icaMco4lVTuIbUY1hBfnp4L3dniDGIM4HXqnSmu4zLbTbGAlTOhs4PpQ0xFG2Jx6_uoWw__XOOhWLhu6SE7pnGTeu2LmQfTx5CP0y_0o9U-we-3eYBuz2Y304vx5fX5fHp6OTYC55CtlVhKKEuNhWXSQmlpY6mllHIpRCMEiMoSS1rZSiCNEXVdtljIWkvJac0O0J-dN-TsKhnXg7nLqbucRBHJOcEiQ8c7aB3DwwCpVyuXDHivOwhDUpTVIucgBGf07xf0Pgyxyy8oyqkQgmPJMzXZUSaGlCK0ah3dSseNIlht-1HbftRHP_ng6E07NCuwH_h7IRmod8Cj87D5j06dXs1nn_JX-PudRg</recordid><startdate>20200727</startdate><enddate>20200727</enddate><creator>Park, Sang Kyu</creator><creator>Sun, Hong</creator><creator>Chung, Hyunjoong</creator><creator>Patel, Bijal B.</creator><creator>Zhang, Fengjiao</creator><creator>Davies, Daniel W.</creator><creator>Woods, Toby J.</creator><creator>Zhao, Kejie</creator><creator>Diao, Ying</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3586-7400</orcidid><orcidid>https://orcid.org/0000-0002-8984-0051</orcidid><orcidid>https://orcid.org/0000-0001-5030-7412</orcidid><orcidid>https://orcid.org/0000-0002-1184-7720</orcidid><orcidid>https://orcid.org/0000000289840051</orcidid><orcidid>https://orcid.org/0000000150307412</orcidid><orcidid>https://orcid.org/0000000211847720</orcidid><orcidid>https://orcid.org/0000000235867400</orcidid></search><sort><creationdate>20200727</creationdate><title>Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics</title><author>Park, Sang Kyu ; Sun, Hong ; Chung, Hyunjoong ; Patel, Bijal B. ; Zhang, Fengjiao ; Davies, Daniel W. ; Woods, Toby J. ; Zhao, Kejie ; Diao, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5033-fd6066e77a05d36de7d2bd2d2224655b55e58d1d1f6f6e1bc5997f0569a664293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bending machines</topic><topic>Carrier mobility</topic><topic>Charge transport</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Current carriers</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Electronics</topic><topic>Electronics industry</topic><topic>Ferroelasticity</topic><topic>Molecular electronics</topic><topic>Organic semiconductors</topic><topic>phase transitions</topic><topic>polymorphism</topic><topic>Robotics</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Superelasticity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sang Kyu</creatorcontrib><creatorcontrib>Sun, Hong</creatorcontrib><creatorcontrib>Chung, Hyunjoong</creatorcontrib><creatorcontrib>Patel, Bijal B.</creatorcontrib><creatorcontrib>Zhang, Fengjiao</creatorcontrib><creatorcontrib>Davies, Daniel W.</creatorcontrib><creatorcontrib>Woods, Toby J.</creatorcontrib><creatorcontrib>Zhao, Kejie</creatorcontrib><creatorcontrib>Diao, Ying</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sang Kyu</au><au>Sun, Hong</au><au>Chung, Hyunjoong</au><au>Patel, Bijal B.</au><au>Zhang, Fengjiao</au><au>Davies, Daniel W.</au><au>Woods, Toby J.</au><au>Zhao, Kejie</au><au>Diao, Ying</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-07-27</date><risdate>2020</risdate><volume>59</volume><issue>31</issue><spage>13004</spage><epage>13012</epage><pages>13004-13012</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (ϵ) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ&gt;0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications. Single crystals of a super‐ and ferroelastic organic semiconductor were harnessed to fabricate ultraflexible single‐crystal electronic devices. At a strain greater than 13 %, the charge carrier mobility of the 6,13‐bis(triisopropylsilylethynyl)pentacene crystals remains above 70 % of that of the unstrained crystal because of mechanically induced cooperative structural transitions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32342626</pmid><doi>10.1002/anie.202004083</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-3586-7400</orcidid><orcidid>https://orcid.org/0000-0002-8984-0051</orcidid><orcidid>https://orcid.org/0000-0001-5030-7412</orcidid><orcidid>https://orcid.org/0000-0002-1184-7720</orcidid><orcidid>https://orcid.org/0000000289840051</orcidid><orcidid>https://orcid.org/0000000150307412</orcidid><orcidid>https://orcid.org/0000000211847720</orcidid><orcidid>https://orcid.org/0000000235867400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2020-07, Vol.59 (31), p.13004-13012
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1644105
source Wiley Journals
subjects Bending machines
Carrier mobility
Charge transport
Crystal structure
Crystals
Current carriers
Electronic devices
Electronic equipment
Electronics
Electronics industry
Ferroelasticity
Molecular electronics
Organic semiconductors
phase transitions
polymorphism
Robotics
Semiconductors
Single crystals
Superelasticity
Transport properties
title Super‐ and Ferroelastic Organic Semiconductors for Ultraflexible Single‐Crystal Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%E2%80%90%20and%20Ferroelastic%20Organic%20Semiconductors%20for%20Ultraflexible%20Single%E2%80%90Crystal%20Electronics&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Park,%20Sang%20Kyu&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-07-27&rft.volume=59&rft.issue=31&rft.spage=13004&rft.epage=13012&rft.pages=13004-13012&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202004083&rft_dat=%3Cproquest_osti_%3E2395606110%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425554064&rft_id=info:pmid/32342626&rfr_iscdi=true