Kinetic simulations of piston-driven collisionless shock formation in magnetized laboratory plasmas

Laboratory laser experiments offer a novel approach to studying magnetized collisionless shocks, and a common method in recent experiments is to drive shocks using a laser-ablated piston plasma. However, current experimental capabilities are still limited to spatio-temporal scales on the order of sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2020-04, Vol.27 (4)
Hauptverfasser: Schaeffer, D. B., Fox, W., Matteucci, J., Lezhnin, K. V., Bhattacharjee, A., Germaschewski, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physics of plasmas
container_volume 27
creator Schaeffer, D. B.
Fox, W.
Matteucci, J.
Lezhnin, K. V.
Bhattacharjee, A.
Germaschewski, K.
description Laboratory laser experiments offer a novel approach to studying magnetized collisionless shocks, and a common method in recent experiments is to drive shocks using a laser-ablated piston plasma. However, current experimental capabilities are still limited to spatio-temporal scales on the order of shock formation, making it challenging to distinguish piston and shock dynamics. We present quasi-1D particle-in-cell simulations of piston-driven, magnetized collisionless shock formation using the code psc , which includes a model of laser-driven plasmas that can be well-matched to experimental conditions. The simulations cover a range of upstream and ablation parameters and yield several robust signatures of shock formation that can provide a reference for experimental results.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1643946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1643946</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16439463</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMoWB__MLgvpBhTuxZFcOvCXYkx1dE0UzpR0K_Xih_g6h44h9sTSSaXRZrrXPU7zmWqtToMxYj5KqVUerFMhN1hcBEtMNZ3byJSYKAKGuRIIT21-HABLHmP_HHeMQNfyN6gorb-9oABanPubl7uBN4cqTWR2ic03nBteCIGlfHspr8di9lmvV9tU-KIJVuMzl4sheBsLDOt5oXS87-iN36tSS4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetic simulations of piston-driven collisionless shock formation in magnetized laboratory plasmas</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Schaeffer, D. B. ; Fox, W. ; Matteucci, J. ; Lezhnin, K. V. ; Bhattacharjee, A. ; Germaschewski, K.</creator><creatorcontrib>Schaeffer, D. B. ; Fox, W. ; Matteucci, J. ; Lezhnin, K. V. ; Bhattacharjee, A. ; Germaschewski, K. ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><description>Laboratory laser experiments offer a novel approach to studying magnetized collisionless shocks, and a common method in recent experiments is to drive shocks using a laser-ablated piston plasma. However, current experimental capabilities are still limited to spatio-temporal scales on the order of shock formation, making it challenging to distinguish piston and shock dynamics. We present quasi-1D particle-in-cell simulations of piston-driven, magnetized collisionless shock formation using the code psc , which includes a model of laser-driven plasmas that can be well-matched to experimental conditions. The simulations cover a range of upstream and ablation parameters and yield several robust signatures of shock formation that can provide a reference for experimental results.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><ispartof>Physics of plasmas, 2020-04, Vol.27 (4)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000284956354 ; 0000000316755910 ; 000000016289858X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1643946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaeffer, D. B.</creatorcontrib><creatorcontrib>Fox, W.</creatorcontrib><creatorcontrib>Matteucci, J.</creatorcontrib><creatorcontrib>Lezhnin, K. V.</creatorcontrib><creatorcontrib>Bhattacharjee, A.</creatorcontrib><creatorcontrib>Germaschewski, K.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><title>Kinetic simulations of piston-driven collisionless shock formation in magnetized laboratory plasmas</title><title>Physics of plasmas</title><description>Laboratory laser experiments offer a novel approach to studying magnetized collisionless shocks, and a common method in recent experiments is to drive shocks using a laser-ablated piston plasma. However, current experimental capabilities are still limited to spatio-temporal scales on the order of shock formation, making it challenging to distinguish piston and shock dynamics. We present quasi-1D particle-in-cell simulations of piston-driven, magnetized collisionless shock formation using the code psc , which includes a model of laser-driven plasmas that can be well-matched to experimental conditions. The simulations cover a range of upstream and ablation parameters and yield several robust signatures of shock formation that can provide a reference for experimental results.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjMsKwjAQRYMoWB__MLgvpBhTuxZFcOvCXYkx1dE0UzpR0K_Xih_g6h44h9sTSSaXRZrrXPU7zmWqtToMxYj5KqVUerFMhN1hcBEtMNZ3byJSYKAKGuRIIT21-HABLHmP_HHeMQNfyN6gorb-9oABanPubl7uBN4cqTWR2ic03nBteCIGlfHspr8di9lmvV9tU-KIJVuMzl4sheBsLDOt5oXS87-iN36tSS4</recordid><startdate>20200407</startdate><enddate>20200407</enddate><creator>Schaeffer, D. B.</creator><creator>Fox, W.</creator><creator>Matteucci, J.</creator><creator>Lezhnin, K. V.</creator><creator>Bhattacharjee, A.</creator><creator>Germaschewski, K.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000284956354</orcidid><orcidid>https://orcid.org/0000000316755910</orcidid><orcidid>https://orcid.org/000000016289858X</orcidid></search><sort><creationdate>20200407</creationdate><title>Kinetic simulations of piston-driven collisionless shock formation in magnetized laboratory plasmas</title><author>Schaeffer, D. B. ; Fox, W. ; Matteucci, J. ; Lezhnin, K. V. ; Bhattacharjee, A. ; Germaschewski, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16439463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaeffer, D. B.</creatorcontrib><creatorcontrib>Fox, W.</creatorcontrib><creatorcontrib>Matteucci, J.</creatorcontrib><creatorcontrib>Lezhnin, K. V.</creatorcontrib><creatorcontrib>Bhattacharjee, A.</creatorcontrib><creatorcontrib>Germaschewski, K.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaeffer, D. B.</au><au>Fox, W.</au><au>Matteucci, J.</au><au>Lezhnin, K. V.</au><au>Bhattacharjee, A.</au><au>Germaschewski, K.</au><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic simulations of piston-driven collisionless shock formation in magnetized laboratory plasmas</atitle><jtitle>Physics of plasmas</jtitle><date>2020-04-07</date><risdate>2020</risdate><volume>27</volume><issue>4</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>Laboratory laser experiments offer a novel approach to studying magnetized collisionless shocks, and a common method in recent experiments is to drive shocks using a laser-ablated piston plasma. However, current experimental capabilities are still limited to spatio-temporal scales on the order of shock formation, making it challenging to distinguish piston and shock dynamics. We present quasi-1D particle-in-cell simulations of piston-driven, magnetized collisionless shock formation using the code psc , which includes a model of laser-driven plasmas that can be well-matched to experimental conditions. The simulations cover a range of upstream and ablation parameters and yield several robust signatures of shock formation that can provide a reference for experimental results.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000284956354</orcidid><orcidid>https://orcid.org/0000000316755910</orcidid><orcidid>https://orcid.org/000000016289858X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2020-04, Vol.27 (4)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1643946
source AIP Journals Complete; Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
title Kinetic simulations of piston-driven collisionless shock formation in magnetized laboratory plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20simulations%20of%20piston-driven%20collisionless%20shock%20formation%20in%20magnetized%20laboratory%20plasmas&rft.jtitle=Physics%20of%20plasmas&rft.au=Schaeffer,%20D.%20B.&rft.aucorp=Princeton%20Plasma%20Physics%20Lab.%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2020-04-07&rft.volume=27&rft.issue=4&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/&rft_dat=%3Costi%3E1643946%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true