Interaction networks for the identification of boosted H → $b\overline b$ decays
We develop an algorithm based on an interaction network to identify high-transverse-momentum Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets that reflect the configurations of quarks and gluons at short distances. The algorithm's inputs are features...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-07, Vol.102 (1) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physical review. D |
container_volume | 102 |
creator | Moreno, Eric A. Nguyen, Thong Q. Vlimant, Jean-Roch Cerri, Olmo Newman, Harvey B. Periwal, Avikar Spiropulu, Maria Duarte, Javier M. Pierini, Maurizio |
description | We develop an algorithm based on an interaction network to identify high-transverse-momentum Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets that reflect the configurations of quarks and gluons at short distances. The algorithm's inputs are features of the reconstructed charged particles in a jet and the secondary vertices associated with them. Describing the jet shower as a combination of particle-to-particle and particle-to-vertex interactions, the model is trained to learn a jet representation on which the classification problem is optimized. The algorithm is trained on simulated samples of realistic LHC collisions, released by the CMS Collaboration on the CERN Open Data Portal. The interaction network achieves a drastic improvement in the identification performance with respect to state-of-the-art algorithms. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1643742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1643742</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16437423</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRYMoWLR3GKTbQtKWlq5FqVtxKUiaTmi0JJAMihfwAB7Rk1hEXLt6D97_ExZlRcVTzrN6-nPB5ywO4cxHLXldCRGx_c4SeqnIOAsW6eb8JYB2HqhHMB1aMtoo-elOQ-tcIOyggdfjCUl7dFf0g7EIbQIdKnkPSzbTcggYf7lgq-3msG7S8WlOQRlC1StnLSo6ibLIqyLL_xq9ATfkQd4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interaction networks for the identification of boosted H → $b\overline b$ decays</title><source>American Physical Society Journals</source><creator>Moreno, Eric A. ; Nguyen, Thong Q. ; Vlimant, Jean-Roch ; Cerri, Olmo ; Newman, Harvey B. ; Periwal, Avikar ; Spiropulu, Maria ; Duarte, Javier M. ; Pierini, Maurizio</creator><creatorcontrib>Moreno, Eric A. ; Nguyen, Thong Q. ; Vlimant, Jean-Roch ; Cerri, Olmo ; Newman, Harvey B. ; Periwal, Avikar ; Spiropulu, Maria ; Duarte, Javier M. ; Pierini, Maurizio ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><description>We develop an algorithm based on an interaction network to identify high-transverse-momentum Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets that reflect the configurations of quarks and gluons at short distances. The algorithm's inputs are features of the reconstructed charged particles in a jet and the secondary vertices associated with them. Describing the jet shower as a combination of particle-to-particle and particle-to-vertex interactions, the model is trained to learn a jet representation on which the classification problem is optimized. The algorithm is trained on simulated samples of realistic LHC collisions, released by the CMS Collaboration on the CERN Open Data Portal. The interaction network achieves a drastic improvement in the identification performance with respect to state-of-the-art algorithms.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><ispartof>Physical review. D, 2020-07, Vol.102 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000319394268 ; 0000000339545131 ; 0000000250767096 ; 000000029705101X ; 0000000221910666 ; 0000000156663637 ; 0000000309641480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1643742$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moreno, Eric A.</creatorcontrib><creatorcontrib>Nguyen, Thong Q.</creatorcontrib><creatorcontrib>Vlimant, Jean-Roch</creatorcontrib><creatorcontrib>Cerri, Olmo</creatorcontrib><creatorcontrib>Newman, Harvey B.</creatorcontrib><creatorcontrib>Periwal, Avikar</creatorcontrib><creatorcontrib>Spiropulu, Maria</creatorcontrib><creatorcontrib>Duarte, Javier M.</creatorcontrib><creatorcontrib>Pierini, Maurizio</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><title>Interaction networks for the identification of boosted H → $b\overline b$ decays</title><title>Physical review. D</title><description>We develop an algorithm based on an interaction network to identify high-transverse-momentum Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets that reflect the configurations of quarks and gluons at short distances. The algorithm's inputs are features of the reconstructed charged particles in a jet and the secondary vertices associated with them. Describing the jet shower as a combination of particle-to-particle and particle-to-vertex interactions, the model is trained to learn a jet representation on which the classification problem is optimized. The algorithm is trained on simulated samples of realistic LHC collisions, released by the CMS Collaboration on the CERN Open Data Portal. The interaction network achieves a drastic improvement in the identification performance with respect to state-of-the-art algorithms.</description><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNi0EKwjAQRYMoWLR3GKTbQtKWlq5FqVtxKUiaTmi0JJAMihfwAB7Rk1hEXLt6D97_ExZlRcVTzrN6-nPB5ywO4cxHLXldCRGx_c4SeqnIOAsW6eb8JYB2HqhHMB1aMtoo-elOQ-tcIOyggdfjCUl7dFf0g7EIbQIdKnkPSzbTcggYf7lgq-3msG7S8WlOQRlC1StnLSo6ibLIqyLL_xq9ATfkQd4</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>Moreno, Eric A.</creator><creator>Nguyen, Thong Q.</creator><creator>Vlimant, Jean-Roch</creator><creator>Cerri, Olmo</creator><creator>Newman, Harvey B.</creator><creator>Periwal, Avikar</creator><creator>Spiropulu, Maria</creator><creator>Duarte, Javier M.</creator><creator>Pierini, Maurizio</creator><general>American Physical Society (APS)</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000319394268</orcidid><orcidid>https://orcid.org/0000000339545131</orcidid><orcidid>https://orcid.org/0000000250767096</orcidid><orcidid>https://orcid.org/000000029705101X</orcidid><orcidid>https://orcid.org/0000000221910666</orcidid><orcidid>https://orcid.org/0000000156663637</orcidid><orcidid>https://orcid.org/0000000309641480</orcidid></search><sort><creationdate>20200728</creationdate><title>Interaction networks for the identification of boosted H → $b\overline b$ decays</title><author>Moreno, Eric A. ; Nguyen, Thong Q. ; Vlimant, Jean-Roch ; Cerri, Olmo ; Newman, Harvey B. ; Periwal, Avikar ; Spiropulu, Maria ; Duarte, Javier M. ; Pierini, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16437423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno, Eric A.</creatorcontrib><creatorcontrib>Nguyen, Thong Q.</creatorcontrib><creatorcontrib>Vlimant, Jean-Roch</creatorcontrib><creatorcontrib>Cerri, Olmo</creatorcontrib><creatorcontrib>Newman, Harvey B.</creatorcontrib><creatorcontrib>Periwal, Avikar</creatorcontrib><creatorcontrib>Spiropulu, Maria</creatorcontrib><creatorcontrib>Duarte, Javier M.</creatorcontrib><creatorcontrib>Pierini, Maurizio</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno, Eric A.</au><au>Nguyen, Thong Q.</au><au>Vlimant, Jean-Roch</au><au>Cerri, Olmo</au><au>Newman, Harvey B.</au><au>Periwal, Avikar</au><au>Spiropulu, Maria</au><au>Duarte, Javier M.</au><au>Pierini, Maurizio</au><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction networks for the identification of boosted H → $b\overline b$ decays</atitle><jtitle>Physical review. D</jtitle><date>2020-07-28</date><risdate>2020</risdate><volume>102</volume><issue>1</issue><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We develop an algorithm based on an interaction network to identify high-transverse-momentum Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets that reflect the configurations of quarks and gluons at short distances. The algorithm's inputs are features of the reconstructed charged particles in a jet and the secondary vertices associated with them. Describing the jet shower as a combination of particle-to-particle and particle-to-vertex interactions, the model is trained to learn a jet representation on which the classification problem is optimized. The algorithm is trained on simulated samples of realistic LHC collisions, released by the CMS Collaboration on the CERN Open Data Portal. The interaction network achieves a drastic improvement in the identification performance with respect to state-of-the-art algorithms.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><orcidid>https://orcid.org/0000000319394268</orcidid><orcidid>https://orcid.org/0000000339545131</orcidid><orcidid>https://orcid.org/0000000250767096</orcidid><orcidid>https://orcid.org/000000029705101X</orcidid><orcidid>https://orcid.org/0000000221910666</orcidid><orcidid>https://orcid.org/0000000156663637</orcidid><orcidid>https://orcid.org/0000000309641480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-07, Vol.102 (1) |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1643742 |
source | American Physical Society Journals |
subjects | PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
title | Interaction networks for the identification of boosted H → $b\overline b$ decays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20networks%20for%20the%20identification%20of%20boosted%20H%20%E2%86%92%20$b%5Coverline%20b$%20decays&rft.jtitle=Physical%20review.%20D&rft.au=Moreno,%20Eric%20A.&rft.aucorp=Fermi%20National%20Accelerator%20Laboratory%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2020-07-28&rft.volume=102&rft.issue=1&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/&rft_dat=%3Costi%3E1643742%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |