Unprecedented Radiation Resistant Thorium–Binaphthol Metal–Organic Framework

A thorium–organic framework (TOF-16) containing hexameric secondary building units connected by functionalized binaphthol linkers was synthesized, characterized, and irradiated to probe its radiation resistance. Radiation stability was examined using γ-rays and 5 MeV He2+ ions to simulate α particle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-08, Vol.142 (31), p.13299-13304
Hauptverfasser: Gilson, Sara E, Fairley, Melissa, Julien, Patrick, Oliver, Allen G, Hanna, Sylvia L, Arntz, Grace, Farha, Omar K, LaVerne, Jay A, Burns, Peter C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A thorium–organic framework (TOF-16) containing hexameric secondary building units connected by functionalized binaphthol linkers was synthesized, characterized, and irradiated to probe its radiation resistance. Radiation stability was examined using γ-rays and 5 MeV He2+ ions to simulate α particles. γ-irradiation of TOF-16 to an unprecedented 4 MGy dose resulted in no apparent bulk structural damage visible by X-ray diffraction. To further probe radiation stability, we conducted the first He2+ ion irradiation study of a metal–organic framework (MOF). Diffraction data indicate onset of crystallinity loss upon approximately 15 MGy of irradiation and total loss of crystallinity upon exposure to approximately 25 MGy of He2+ ion irradiation. The high radiation resistance observed suggests MOFs can withstand radiation exposure at doses found in nuclear waste streams and highlights the need for a systematic approach to understand and eventually design frameworks with exceptional radiation resistance.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.0c05272