Unprecedented Radiation Resistant Thorium–Binaphthol Metal–Organic Framework
A thorium–organic framework (TOF-16) containing hexameric secondary building units connected by functionalized binaphthol linkers was synthesized, characterized, and irradiated to probe its radiation resistance. Radiation stability was examined using γ-rays and 5 MeV He2+ ions to simulate α particle...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-08, Vol.142 (31), p.13299-13304 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A thorium–organic framework (TOF-16) containing hexameric secondary building units connected by functionalized binaphthol linkers was synthesized, characterized, and irradiated to probe its radiation resistance. Radiation stability was examined using γ-rays and 5 MeV He2+ ions to simulate α particles. γ-irradiation of TOF-16 to an unprecedented 4 MGy dose resulted in no apparent bulk structural damage visible by X-ray diffraction. To further probe radiation stability, we conducted the first He2+ ion irradiation study of a metal–organic framework (MOF). Diffraction data indicate onset of crystallinity loss upon approximately 15 MGy of irradiation and total loss of crystallinity upon exposure to approximately 25 MGy of He2+ ion irradiation. The high radiation resistance observed suggests MOFs can withstand radiation exposure at doses found in nuclear waste streams and highlights the need for a systematic approach to understand and eventually design frameworks with exceptional radiation resistance. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.0c05272 |