A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient

•Thermal diffusion and vapor transport mechanisms are implemented and verified.•Gas bubble shape change during migration are captured by the simulation.•Center hole formation in the UO2 nuclear fuel pellet is confirmed by the model. Phase field models are developed to study the gas bubble migration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2020-10, Vol.183, p.109817, Article 109817
Hauptverfasser: Wang, Yafeng, Xiao, Zhihua, Hu, Shenyang, Li, Yulan, Shi, San-Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109817
container_title Computational materials science
container_volume 183
creator Wang, Yafeng
Xiao, Zhihua
Hu, Shenyang
Li, Yulan
Shi, San-Qiang
description •Thermal diffusion and vapor transport mechanisms are implemented and verified.•Gas bubble shape change during migration are captured by the simulation.•Center hole formation in the UO2 nuclear fuel pellet is confirmed by the model. Phase field models are developed to study the gas bubble migration in uranium dioxide nuclear fuel in which a large temperature gradient exists during the operation. In this work, thermal diffusion mechanism for nanosized gas bubbles and vapor transport process for micron-sized gas bubbles are considered, respectively. In both cases, gas bubbles migrate to the high-temperature area. Due to the velocity difference between leading and trailing edges of the gas bubbles, nanosized gas bubbles are elongated along the temperature gradient direction when thermal diffusion is dominated. Micron-sized gas bubbles are either compressed along temperature gradient direction to form lenticular shape bubbles or elongated along temperature gradient direction, depending on the location of the gas bubbles within the fuel pellet. Initial gas bubble radius has no significant effect on the gas bubble migration velocity for both thermal diffusion and vapor transport mechanisms. We notice that the shape change of the gas bubble due to vapor transport mechanism has no significant effect on the migration velocity. Furthermore, the center cavity formation is also captured by our model which is due to the migration and accumulation of lenticular gas bubbles at the center of the fuel pellet. The modeling results compare well with experimental observations and theoretical analysis in the literature.
doi_str_mv 10.1016/j.commatsci.2020.109817
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1639154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025620303086</els_id><sourcerecordid>S0927025620303086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-40df7db33bb5a15f757098e60b440b8bc2f33e16c275ab8e37e061e45b99a4453</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoenjGyq6dyrJlmUvQ-gLAtk0ayHJo0TGjyDJhfx9ZVy67WIQjObMZQ5CT5SsKaHlS7s2Y9-rGIxbM8Lmbl1RcYVWtBJ1RipCr9GK1ExkhPHyFt2F0JJE1hVboXaDzycVAFsHXYNDnJoLHi2OJ5jL96rDvTt6Fd04zB9HFbCetO4gYDfgw57hYTIdKI_tBB2ehgY8jtCfIUGTB5zgxsEQH9CNVV2Ax9_3Hh3eXr-2H9lu__653ewyk9c0ZgVprGh0nmvNFeVWcJEOgpLooiC60obZPAdaGia40hXkAkhJoeC6rlVR8PwePS97xxCdTFoimJMZhwFMlLRMIbxIQ2IZMn4MwYOVZ-965S-SEjl7la388ypnr3LxmsjNQkK64duBnyNgMNA4Pyc0o_t3xw_fGoXs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Yafeng ; Xiao, Zhihua ; Hu, Shenyang ; Li, Yulan ; Shi, San-Qiang</creator><creatorcontrib>Wang, Yafeng ; Xiao, Zhihua ; Hu, Shenyang ; Li, Yulan ; Shi, San-Qiang ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>•Thermal diffusion and vapor transport mechanisms are implemented and verified.•Gas bubble shape change during migration are captured by the simulation.•Center hole formation in the UO2 nuclear fuel pellet is confirmed by the model. Phase field models are developed to study the gas bubble migration in uranium dioxide nuclear fuel in which a large temperature gradient exists during the operation. In this work, thermal diffusion mechanism for nanosized gas bubbles and vapor transport process for micron-sized gas bubbles are considered, respectively. In both cases, gas bubbles migrate to the high-temperature area. Due to the velocity difference between leading and trailing edges of the gas bubbles, nanosized gas bubbles are elongated along the temperature gradient direction when thermal diffusion is dominated. Micron-sized gas bubbles are either compressed along temperature gradient direction to form lenticular shape bubbles or elongated along temperature gradient direction, depending on the location of the gas bubbles within the fuel pellet. Initial gas bubble radius has no significant effect on the gas bubble migration velocity for both thermal diffusion and vapor transport mechanisms. We notice that the shape change of the gas bubble due to vapor transport mechanism has no significant effect on the migration velocity. Furthermore, the center cavity formation is also captured by our model which is due to the migration and accumulation of lenticular gas bubbles at the center of the fuel pellet. The modeling results compare well with experimental observations and theoretical analysis in the literature.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2020.109817</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Gas bubble migration ; gas bubble migration, quantitative phase-field modeling, temperature gradient ; NUCLEAR FUEL CYCLE AND FUEL MATERIALS ; Quantitative phase-field modeling ; Temperature gradient</subject><ispartof>Computational materials science, 2020-10, Vol.183, p.109817, Article 109817</ispartof><rights>2020 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-40df7db33bb5a15f757098e60b440b8bc2f33e16c275ab8e37e061e45b99a4453</citedby><cites>FETCH-LOGICAL-c391t-40df7db33bb5a15f757098e60b440b8bc2f33e16c275ab8e37e061e45b99a4453</cites><orcidid>0000-0002-7884-0240 ; 0000000278840240 ; 0000000271873082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025620303086$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1639154$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yafeng</creatorcontrib><creatorcontrib>Xiao, Zhihua</creatorcontrib><creatorcontrib>Hu, Shenyang</creatorcontrib><creatorcontrib>Li, Yulan</creatorcontrib><creatorcontrib>Shi, San-Qiang</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient</title><title>Computational materials science</title><description>•Thermal diffusion and vapor transport mechanisms are implemented and verified.•Gas bubble shape change during migration are captured by the simulation.•Center hole formation in the UO2 nuclear fuel pellet is confirmed by the model. Phase field models are developed to study the gas bubble migration in uranium dioxide nuclear fuel in which a large temperature gradient exists during the operation. In this work, thermal diffusion mechanism for nanosized gas bubbles and vapor transport process for micron-sized gas bubbles are considered, respectively. In both cases, gas bubbles migrate to the high-temperature area. Due to the velocity difference between leading and trailing edges of the gas bubbles, nanosized gas bubbles are elongated along the temperature gradient direction when thermal diffusion is dominated. Micron-sized gas bubbles are either compressed along temperature gradient direction to form lenticular shape bubbles or elongated along temperature gradient direction, depending on the location of the gas bubbles within the fuel pellet. Initial gas bubble radius has no significant effect on the gas bubble migration velocity for both thermal diffusion and vapor transport mechanisms. We notice that the shape change of the gas bubble due to vapor transport mechanism has no significant effect on the migration velocity. Furthermore, the center cavity formation is also captured by our model which is due to the migration and accumulation of lenticular gas bubbles at the center of the fuel pellet. The modeling results compare well with experimental observations and theoretical analysis in the literature.</description><subject>Gas bubble migration</subject><subject>gas bubble migration, quantitative phase-field modeling, temperature gradient</subject><subject>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</subject><subject>Quantitative phase-field modeling</subject><subject>Temperature gradient</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoenjGyq6dyrJlmUvQ-gLAtk0ayHJo0TGjyDJhfx9ZVy67WIQjObMZQ5CT5SsKaHlS7s2Y9-rGIxbM8Lmbl1RcYVWtBJ1RipCr9GK1ExkhPHyFt2F0JJE1hVboXaDzycVAFsHXYNDnJoLHi2OJ5jL96rDvTt6Fd04zB9HFbCetO4gYDfgw57hYTIdKI_tBB2ehgY8jtCfIUGTB5zgxsEQH9CNVV2Ax9_3Hh3eXr-2H9lu__653ewyk9c0ZgVprGh0nmvNFeVWcJEOgpLooiC60obZPAdaGia40hXkAkhJoeC6rlVR8PwePS97xxCdTFoimJMZhwFMlLRMIbxIQ2IZMn4MwYOVZ-965S-SEjl7la388ypnr3LxmsjNQkK64duBnyNgMNA4Pyc0o_t3xw_fGoXs</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wang, Yafeng</creator><creator>Xiao, Zhihua</creator><creator>Hu, Shenyang</creator><creator>Li, Yulan</creator><creator>Shi, San-Qiang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7884-0240</orcidid><orcidid>https://orcid.org/0000000278840240</orcidid><orcidid>https://orcid.org/0000000271873082</orcidid></search><sort><creationdate>20201001</creationdate><title>A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient</title><author>Wang, Yafeng ; Xiao, Zhihua ; Hu, Shenyang ; Li, Yulan ; Shi, San-Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-40df7db33bb5a15f757098e60b440b8bc2f33e16c275ab8e37e061e45b99a4453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Gas bubble migration</topic><topic>gas bubble migration, quantitative phase-field modeling, temperature gradient</topic><topic>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</topic><topic>Quantitative phase-field modeling</topic><topic>Temperature gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yafeng</creatorcontrib><creatorcontrib>Xiao, Zhihua</creatorcontrib><creatorcontrib>Hu, Shenyang</creatorcontrib><creatorcontrib>Li, Yulan</creatorcontrib><creatorcontrib>Shi, San-Qiang</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yafeng</au><au>Xiao, Zhihua</au><au>Hu, Shenyang</au><au>Li, Yulan</au><au>Shi, San-Qiang</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient</atitle><jtitle>Computational materials science</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>183</volume><spage>109817</spage><pages>109817-</pages><artnum>109817</artnum><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>•Thermal diffusion and vapor transport mechanisms are implemented and verified.•Gas bubble shape change during migration are captured by the simulation.•Center hole formation in the UO2 nuclear fuel pellet is confirmed by the model. Phase field models are developed to study the gas bubble migration in uranium dioxide nuclear fuel in which a large temperature gradient exists during the operation. In this work, thermal diffusion mechanism for nanosized gas bubbles and vapor transport process for micron-sized gas bubbles are considered, respectively. In both cases, gas bubbles migrate to the high-temperature area. Due to the velocity difference between leading and trailing edges of the gas bubbles, nanosized gas bubbles are elongated along the temperature gradient direction when thermal diffusion is dominated. Micron-sized gas bubbles are either compressed along temperature gradient direction to form lenticular shape bubbles or elongated along temperature gradient direction, depending on the location of the gas bubbles within the fuel pellet. Initial gas bubble radius has no significant effect on the gas bubble migration velocity for both thermal diffusion and vapor transport mechanisms. We notice that the shape change of the gas bubble due to vapor transport mechanism has no significant effect on the migration velocity. Furthermore, the center cavity formation is also captured by our model which is due to the migration and accumulation of lenticular gas bubbles at the center of the fuel pellet. The modeling results compare well with experimental observations and theoretical analysis in the literature.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2020.109817</doi><orcidid>https://orcid.org/0000-0002-7884-0240</orcidid><orcidid>https://orcid.org/0000000278840240</orcidid><orcidid>https://orcid.org/0000000271873082</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2020-10, Vol.183, p.109817, Article 109817
issn 0927-0256
1879-0801
language eng
recordid cdi_osti_scitechconnect_1639154
source Elsevier ScienceDirect Journals
subjects Gas bubble migration
gas bubble migration, quantitative phase-field modeling, temperature gradient
NUCLEAR FUEL CYCLE AND FUEL MATERIALS
Quantitative phase-field modeling
Temperature gradient
title A phase field study of the thermal migration of gas bubbles in UO2 nuclear fuel under temperature gradient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phase%20field%20study%20of%20the%20thermal%20migration%20of%20gas%20bubbles%20in%20UO2%20nuclear%20fuel%20under%20temperature%20gradient&rft.jtitle=Computational%20materials%20science&rft.au=Wang,%20Yafeng&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2020-10-01&rft.volume=183&rft.spage=109817&rft.pages=109817-&rft.artnum=109817&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2020.109817&rft_dat=%3Celsevier_osti_%3ES0927025620303086%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0927025620303086&rfr_iscdi=true