Low friction in bcc metals via grain boundary sliding

In this work, low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review materials 2020-06, Vol.4 (6), Article 063602
Hauptverfasser: Hinkle, Adam R., Curry, John F., Lim, Hojun, Nation, Brendan L., Jones, Morgan R., Wellington-Johnson, John, Lu, Ping, Argibay, Nicolas, Chandross, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physical review materials
container_volume 4
creator Hinkle, Adam R.
Curry, John F.
Lim, Hojun
Nation, Brendan L.
Jones, Morgan R.
Wellington-Johnson, John
Lu, Ping
Argibay, Nicolas
Chandross, Michael
description In this work, low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions.
doi_str_mv 10.1103/PhysRevMaterials.4.063602
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1639071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevMaterials_4_063602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-30195b3747e08b055d8f489f26d9681ba490e3b0b6e4a6d78666776c784bb4f93</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWGr_Q3Q_483kvZTiC0YU0XVIMpk20s5IEiv9906pC3F1D5ePw-FD6JJATQjQ65f1Pr-G3ZMtIUW7yTWrQVABzQmaNUzySmtOT__kc7TI-QMAiOKkkXqGeDt-4z5FX-I44Dhg5z3ehjK14V20eJXs4Tl-DZ1Ne5w3sYvD6gKd9RMRFr93jt7vbt-WD1X7fP-4vGkrT6kuFQWiuaOSyQDKAeed6pnSfSM6LRRxlmkI1IETgVnRSSWEkFJ4qZhzrNd0jq6OvWMu0WQfS_BrPw5D8MUQQTVIMkH6CPk05pxCbz5T3E5rDQFz8GT-ezLMHD3RHyKDX0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low friction in bcc metals via grain boundary sliding</title><source>American Physical Society Journals</source><creator>Hinkle, Adam R. ; Curry, John F. ; Lim, Hojun ; Nation, Brendan L. ; Jones, Morgan R. ; Wellington-Johnson, John ; Lu, Ping ; Argibay, Nicolas ; Chandross, Michael</creator><creatorcontrib>Hinkle, Adam R. ; Curry, John F. ; Lim, Hojun ; Nation, Brendan L. ; Jones, Morgan R. ; Wellington-Johnson, John ; Lu, Ping ; Argibay, Nicolas ; Chandross, Michael ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>In this work, low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.4.063602</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><ispartof>Physical review materials, 2020-06, Vol.4 (6), Article 063602</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-30195b3747e08b055d8f489f26d9681ba490e3b0b6e4a6d78666776c784bb4f93</citedby><cites>FETCH-LOGICAL-c339t-30195b3747e08b055d8f489f26d9681ba490e3b0b6e4a6d78666776c784bb4f93</cites><orcidid>0000-0001-9990-9748 ; 0000000199909748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1639071$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hinkle, Adam R.</creatorcontrib><creatorcontrib>Curry, John F.</creatorcontrib><creatorcontrib>Lim, Hojun</creatorcontrib><creatorcontrib>Nation, Brendan L.</creatorcontrib><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Wellington-Johnson, John</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><creatorcontrib>Chandross, Michael</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Low friction in bcc metals via grain boundary sliding</title><title>Physical review materials</title><description>In this work, low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWGr_Q3Q_483kvZTiC0YU0XVIMpk20s5IEiv9906pC3F1D5ePw-FD6JJATQjQ65f1Pr-G3ZMtIUW7yTWrQVABzQmaNUzySmtOT__kc7TI-QMAiOKkkXqGeDt-4z5FX-I44Dhg5z3ehjK14V20eJXs4Tl-DZ1Ne5w3sYvD6gKd9RMRFr93jt7vbt-WD1X7fP-4vGkrT6kuFQWiuaOSyQDKAeed6pnSfSM6LRRxlmkI1IETgVnRSSWEkFJ4qZhzrNd0jq6OvWMu0WQfS_BrPw5D8MUQQTVIMkH6CPk05pxCbz5T3E5rDQFz8GT-ezLMHD3RHyKDX0E</recordid><startdate>20200608</startdate><enddate>20200608</enddate><creator>Hinkle, Adam R.</creator><creator>Curry, John F.</creator><creator>Lim, Hojun</creator><creator>Nation, Brendan L.</creator><creator>Jones, Morgan R.</creator><creator>Wellington-Johnson, John</creator><creator>Lu, Ping</creator><creator>Argibay, Nicolas</creator><creator>Chandross, Michael</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9990-9748</orcidid><orcidid>https://orcid.org/0000000199909748</orcidid></search><sort><creationdate>20200608</creationdate><title>Low friction in bcc metals via grain boundary sliding</title><author>Hinkle, Adam R. ; Curry, John F. ; Lim, Hojun ; Nation, Brendan L. ; Jones, Morgan R. ; Wellington-Johnson, John ; Lu, Ping ; Argibay, Nicolas ; Chandross, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-30195b3747e08b055d8f489f26d9681ba490e3b0b6e4a6d78666776c784bb4f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinkle, Adam R.</creatorcontrib><creatorcontrib>Curry, John F.</creatorcontrib><creatorcontrib>Lim, Hojun</creatorcontrib><creatorcontrib>Nation, Brendan L.</creatorcontrib><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Wellington-Johnson, John</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><creatorcontrib>Chandross, Michael</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinkle, Adam R.</au><au>Curry, John F.</au><au>Lim, Hojun</au><au>Nation, Brendan L.</au><au>Jones, Morgan R.</au><au>Wellington-Johnson, John</au><au>Lu, Ping</au><au>Argibay, Nicolas</au><au>Chandross, Michael</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low friction in bcc metals via grain boundary sliding</atitle><jtitle>Physical review materials</jtitle><date>2020-06-08</date><risdate>2020</risdate><volume>4</volume><issue>6</issue><artnum>063602</artnum><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>In this work, low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevMaterials.4.063602</doi><orcidid>https://orcid.org/0000-0001-9990-9748</orcidid><orcidid>https://orcid.org/0000000199909748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-9953
ispartof Physical review materials, 2020-06, Vol.4 (6), Article 063602
issn 2475-9953
2475-9953
language eng
recordid cdi_osti_scitechconnect_1639071
source American Physical Society Journals
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
title Low friction in bcc metals via grain boundary sliding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20friction%20in%20bcc%20metals%20via%20grain%20boundary%20sliding&rft.jtitle=Physical%20review%20materials&rft.au=Hinkle,%20Adam%20R.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2020-06-08&rft.volume=4&rft.issue=6&rft.artnum=063602&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.4.063602&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevMaterials_4_063602%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true