Low friction in bcc metals via grain boundary sliding
In this work, low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained u...
Gespeichert in:
Veröffentlicht in: | Physical review materials 2020-06, Vol.4 (6), Article 063602 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physical review materials |
container_volume | 4 |
creator | Hinkle, Adam R. Curry, John F. Lim, Hojun Nation, Brendan L. Jones, Morgan R. Wellington-Johnson, John Lu, Ping Argibay, Nicolas Chandross, Michael |
description | In this work, low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions. |
doi_str_mv | 10.1103/PhysRevMaterials.4.063602 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1639071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevMaterials_4_063602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-30195b3747e08b055d8f489f26d9681ba490e3b0b6e4a6d78666776c784bb4f93</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMoWGr_Q3Q_483kvZTiC0YU0XVIMpk20s5IEiv9906pC3F1D5ePw-FD6JJATQjQ65f1Pr-G3ZMtIUW7yTWrQVABzQmaNUzySmtOT__kc7TI-QMAiOKkkXqGeDt-4z5FX-I44Dhg5z3ehjK14V20eJXs4Tl-DZ1Ne5w3sYvD6gKd9RMRFr93jt7vbt-WD1X7fP-4vGkrT6kuFQWiuaOSyQDKAeed6pnSfSM6LRRxlmkI1IETgVnRSSWEkFJ4qZhzrNd0jq6OvWMu0WQfS_BrPw5D8MUQQTVIMkH6CPk05pxCbz5T3E5rDQFz8GT-ezLMHD3RHyKDX0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low friction in bcc metals via grain boundary sliding</title><source>American Physical Society Journals</source><creator>Hinkle, Adam R. ; Curry, John F. ; Lim, Hojun ; Nation, Brendan L. ; Jones, Morgan R. ; Wellington-Johnson, John ; Lu, Ping ; Argibay, Nicolas ; Chandross, Michael</creator><creatorcontrib>Hinkle, Adam R. ; Curry, John F. ; Lim, Hojun ; Nation, Brendan L. ; Jones, Morgan R. ; Wellington-Johnson, John ; Lu, Ping ; Argibay, Nicolas ; Chandross, Michael ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>In this work, low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.4.063602</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><ispartof>Physical review materials, 2020-06, Vol.4 (6), Article 063602</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-30195b3747e08b055d8f489f26d9681ba490e3b0b6e4a6d78666776c784bb4f93</citedby><cites>FETCH-LOGICAL-c339t-30195b3747e08b055d8f489f26d9681ba490e3b0b6e4a6d78666776c784bb4f93</cites><orcidid>0000-0001-9990-9748 ; 0000000199909748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1639071$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hinkle, Adam R.</creatorcontrib><creatorcontrib>Curry, John F.</creatorcontrib><creatorcontrib>Lim, Hojun</creatorcontrib><creatorcontrib>Nation, Brendan L.</creatorcontrib><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Wellington-Johnson, John</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><creatorcontrib>Chandross, Michael</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Low friction in bcc metals via grain boundary sliding</title><title>Physical review materials</title><description>In this work, low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMoWGr_Q3Q_483kvZTiC0YU0XVIMpk20s5IEiv9906pC3F1D5ePw-FD6JJATQjQ65f1Pr-G3ZMtIUW7yTWrQVABzQmaNUzySmtOT__kc7TI-QMAiOKkkXqGeDt-4z5FX-I44Dhg5z3ehjK14V20eJXs4Tl-DZ1Ne5w3sYvD6gKd9RMRFr93jt7vbt-WD1X7fP-4vGkrT6kuFQWiuaOSyQDKAeed6pnSfSM6LRRxlmkI1IETgVnRSSWEkFJ4qZhzrNd0jq6OvWMu0WQfS_BrPw5D8MUQQTVIMkH6CPk05pxCbz5T3E5rDQFz8GT-ezLMHD3RHyKDX0E</recordid><startdate>20200608</startdate><enddate>20200608</enddate><creator>Hinkle, Adam R.</creator><creator>Curry, John F.</creator><creator>Lim, Hojun</creator><creator>Nation, Brendan L.</creator><creator>Jones, Morgan R.</creator><creator>Wellington-Johnson, John</creator><creator>Lu, Ping</creator><creator>Argibay, Nicolas</creator><creator>Chandross, Michael</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9990-9748</orcidid><orcidid>https://orcid.org/0000000199909748</orcidid></search><sort><creationdate>20200608</creationdate><title>Low friction in bcc metals via grain boundary sliding</title><author>Hinkle, Adam R. ; Curry, John F. ; Lim, Hojun ; Nation, Brendan L. ; Jones, Morgan R. ; Wellington-Johnson, John ; Lu, Ping ; Argibay, Nicolas ; Chandross, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-30195b3747e08b055d8f489f26d9681ba490e3b0b6e4a6d78666776c784bb4f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinkle, Adam R.</creatorcontrib><creatorcontrib>Curry, John F.</creatorcontrib><creatorcontrib>Lim, Hojun</creatorcontrib><creatorcontrib>Nation, Brendan L.</creatorcontrib><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Wellington-Johnson, John</creatorcontrib><creatorcontrib>Lu, Ping</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><creatorcontrib>Chandross, Michael</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinkle, Adam R.</au><au>Curry, John F.</au><au>Lim, Hojun</au><au>Nation, Brendan L.</au><au>Jones, Morgan R.</au><au>Wellington-Johnson, John</au><au>Lu, Ping</au><au>Argibay, Nicolas</au><au>Chandross, Michael</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low friction in bcc metals via grain boundary sliding</atitle><jtitle>Physical review materials</jtitle><date>2020-06-08</date><risdate>2020</risdate><volume>4</volume><issue>6</issue><artnum>063602</artnum><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>In this work, low friction is demonstrated with pure polycrystalline tantalum sliding contacts in both molecular dynamics simulations and ultrahigh vacuum experiments. This phenomenon is shown to be correlated with deformation occurring primarily through grain boundary sliding and can be explained using a recently developed predictive model for the shear strength of metals. Specifically, low friction is associated with grain sizes at the interface being smaller than a critical, material-dependent value, where a crossover from dislocation mediated plasticity to grain-boundary sliding occurs. Low friction is therefore associated with inverse Hall-Petch behavior and softening of the interface. Direct quantitative comparisons between experiments and atomistic calculations are used to illustrate the accuracy of the predictions.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevMaterials.4.063602</doi><orcidid>https://orcid.org/0000-0001-9990-9748</orcidid><orcidid>https://orcid.org/0000000199909748</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-9953 |
ispartof | Physical review materials, 2020-06, Vol.4 (6), Article 063602 |
issn | 2475-9953 2475-9953 |
language | eng |
recordid | cdi_osti_scitechconnect_1639071 |
source | American Physical Society Journals |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY |
title | Low friction in bcc metals via grain boundary sliding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20friction%20in%20bcc%20metals%20via%20grain%20boundary%20sliding&rft.jtitle=Physical%20review%20materials&rft.au=Hinkle,%20Adam%20R.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2020-06-08&rft.volume=4&rft.issue=6&rft.artnum=063602&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.4.063602&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevMaterials_4_063602%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |