Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components
The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synt...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-07, Vol.14 (7), p.7847-7859 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7859 |
---|---|
container_issue | 7 |
container_start_page | 7847 |
container_title | ACS nano |
container_volume | 14 |
creator | Guo, Jimin Agola, Jacob Ongudi Serda, Rita Franco, Stefan Lei, Qi Wang, Lu Minster, Joshua Croissant, Jonas G Butler, Kimberly S Zhu, Wei Brinker, C. Jeffrey |
description | The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synthetic rebuilt red blood cells (RRBCs) that fully mimic the broad properties of native RBCs: size, biconcave shape, deformability, oxygen-carrying capacity, and long circulation time. Four successive nanoscale processing steps (RBC bioreplication, layer-by-layer polymer deposition, and precision silica etching, followed by RBC ghost membrane vesicle fusion) are employed for RRBC construction. A panel of physicochemical analyses including zeta-potential measurement, fluorescence microscopy, and antibody-mediated agglutination assay proved the recapitulation of RBC shape, size, and membrane structure. Flow-based deformation studies carried out in a microfluidic blood capillary model confirmed the ability of RRBCs to deform and pass through small slits and reconstitute themselves in a manner comparable to native RBCs. Circulation studies of RRBCs conducted ex ovo in a chick embryo and in vivo in a mouse model demonstrated the requirement of both deformability and native cell membrane surface to achieve long-term circulation. To confer additional non-native functionalities to RRBCs, we developed modular procedures with which to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP biosensors within the RRBC interior to enable various functions, including oxygen delivery, therapeutic drug delivery, magnetic manipulation, and toxin biosensing and detection. Taken together, RRBCs represent a class of long-circulating RBC-inspired artificial hybrid materials with a broad range of potential applications. |
doi_str_mv | 10.1021/acsnano.9b08714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1639054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401090625</sourcerecordid><originalsourceid>FETCH-LOGICAL-a467t-6fd50777e7d3dd3cf1eae3eb6b60a5bba5908c0461800cccfc7d8112f6d497c93</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7P3qR4EqTbS38krTc3nQobgjjwFtIknRltMpv04H9vx-o8eXoP3uf7hfdB6BLDGEOEJ1w4w40d5wVkFCdHaIjzmISQkY_jw57iATpzbgOQ0oySUzSIozjHJKNDJKfa1rpWXovgTRWtrqQ268CWwbKtvC5bI7y2hlfdVQbTyloZzFRVubtgaWVb8SZ4UE6vTbByu-D8LzCz9dYaZbw7Ryclr5y66OcIreaP77PncPH69DK7X4Q8IdSHpJQpUEoVlbGUsSix4ipWBSkI8LQoeJpDJiAhOAMQQpSCygzjqCQyyanI4xG63vda5zVzQnslPoU1RgnPMIlzSJMOutlD28Z-tcp5Vmsnupe4UbZ1LEoAQw4kSjt0skdFY51rVMm2ja55880wsJ1_1vtnvf8ucdWXt0Wt5IH_Fd4Bt3ugS7KNbZvOlPu37gdsiJH7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401090625</pqid></control><display><type>article</type><title>Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components</title><source>MEDLINE</source><source>ACS Publications</source><creator>Guo, Jimin ; Agola, Jacob Ongudi ; Serda, Rita ; Franco, Stefan ; Lei, Qi ; Wang, Lu ; Minster, Joshua ; Croissant, Jonas G ; Butler, Kimberly S ; Zhu, Wei ; Brinker, C. Jeffrey</creator><creatorcontrib>Guo, Jimin ; Agola, Jacob Ongudi ; Serda, Rita ; Franco, Stefan ; Lei, Qi ; Wang, Lu ; Minster, Joshua ; Croissant, Jonas G ; Butler, Kimberly S ; Zhu, Wei ; Brinker, C. Jeffrey ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synthetic rebuilt red blood cells (RRBCs) that fully mimic the broad properties of native RBCs: size, biconcave shape, deformability, oxygen-carrying capacity, and long circulation time. Four successive nanoscale processing steps (RBC bioreplication, layer-by-layer polymer deposition, and precision silica etching, followed by RBC ghost membrane vesicle fusion) are employed for RRBC construction. A panel of physicochemical analyses including zeta-potential measurement, fluorescence microscopy, and antibody-mediated agglutination assay proved the recapitulation of RBC shape, size, and membrane structure. Flow-based deformation studies carried out in a microfluidic blood capillary model confirmed the ability of RRBCs to deform and pass through small slits and reconstitute themselves in a manner comparable to native RBCs. Circulation studies of RRBCs conducted ex ovo in a chick embryo and in vivo in a mouse model demonstrated the requirement of both deformability and native cell membrane surface to achieve long-term circulation. To confer additional non-native functionalities to RRBCs, we developed modular procedures with which to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP biosensors within the RRBC interior to enable various functions, including oxygen delivery, therapeutic drug delivery, magnetic manipulation, and toxin biosensing and detection. Taken together, RRBCs represent a class of long-circulating RBC-inspired artificial hybrid materials with a broad range of potential applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b08714</identifier><identifier>PMID: 32391687</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; BASIC BIOLOGICAL SCIENCES ; Biomimetics ; Chick Embryo ; Erythrocyte Membrane ; Erythrocytes ; Mice ; Microfluidics ; Pharmaceutical Preparations</subject><ispartof>ACS nano, 2020-07, Vol.14 (7), p.7847-7859</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a467t-6fd50777e7d3dd3cf1eae3eb6b60a5bba5908c0461800cccfc7d8112f6d497c93</citedby><cites>FETCH-LOGICAL-a467t-6fd50777e7d3dd3cf1eae3eb6b60a5bba5908c0461800cccfc7d8112f6d497c93</cites><orcidid>0000-0003-3240-6905 ; 0000-0001-6045-8636 ; 0000-0002-7145-9324 ; 0000000332406905 ; 0000000271459324 ; 0000000160458636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b08714$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b08714$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32391687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1639054$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jimin</creatorcontrib><creatorcontrib>Agola, Jacob Ongudi</creatorcontrib><creatorcontrib>Serda, Rita</creatorcontrib><creatorcontrib>Franco, Stefan</creatorcontrib><creatorcontrib>Lei, Qi</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Minster, Joshua</creatorcontrib><creatorcontrib>Croissant, Jonas G</creatorcontrib><creatorcontrib>Butler, Kimberly S</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Brinker, C. Jeffrey</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synthetic rebuilt red blood cells (RRBCs) that fully mimic the broad properties of native RBCs: size, biconcave shape, deformability, oxygen-carrying capacity, and long circulation time. Four successive nanoscale processing steps (RBC bioreplication, layer-by-layer polymer deposition, and precision silica etching, followed by RBC ghost membrane vesicle fusion) are employed for RRBC construction. A panel of physicochemical analyses including zeta-potential measurement, fluorescence microscopy, and antibody-mediated agglutination assay proved the recapitulation of RBC shape, size, and membrane structure. Flow-based deformation studies carried out in a microfluidic blood capillary model confirmed the ability of RRBCs to deform and pass through small slits and reconstitute themselves in a manner comparable to native RBCs. Circulation studies of RRBCs conducted ex ovo in a chick embryo and in vivo in a mouse model demonstrated the requirement of both deformability and native cell membrane surface to achieve long-term circulation. To confer additional non-native functionalities to RRBCs, we developed modular procedures with which to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP biosensors within the RRBC interior to enable various functions, including oxygen delivery, therapeutic drug delivery, magnetic manipulation, and toxin biosensing and detection. Taken together, RRBCs represent a class of long-circulating RBC-inspired artificial hybrid materials with a broad range of potential applications.</description><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomimetics</subject><subject>Chick Embryo</subject><subject>Erythrocyte Membrane</subject><subject>Erythrocytes</subject><subject>Mice</subject><subject>Microfluidics</subject><subject>Pharmaceutical Preparations</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4Mobk7P3qR4EqTbS38krTc3nQobgjjwFtIknRltMpv04H9vx-o8eXoP3uf7hfdB6BLDGEOEJ1w4w40d5wVkFCdHaIjzmISQkY_jw57iATpzbgOQ0oySUzSIozjHJKNDJKfa1rpWXovgTRWtrqQ268CWwbKtvC5bI7y2hlfdVQbTyloZzFRVubtgaWVb8SZ4UE6vTbByu-D8LzCz9dYaZbw7Ryclr5y66OcIreaP77PncPH69DK7X4Q8IdSHpJQpUEoVlbGUsSix4ipWBSkI8LQoeJpDJiAhOAMQQpSCygzjqCQyyanI4xG63vda5zVzQnslPoU1RgnPMIlzSJMOutlD28Z-tcp5Vmsnupe4UbZ1LEoAQw4kSjt0skdFY51rVMm2ja55880wsJ1_1vtnvf8ucdWXt0Wt5IH_Fd4Bt3ugS7KNbZvOlPu37gdsiJH7</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>Guo, Jimin</creator><creator>Agola, Jacob Ongudi</creator><creator>Serda, Rita</creator><creator>Franco, Stefan</creator><creator>Lei, Qi</creator><creator>Wang, Lu</creator><creator>Minster, Joshua</creator><creator>Croissant, Jonas G</creator><creator>Butler, Kimberly S</creator><creator>Zhu, Wei</creator><creator>Brinker, C. Jeffrey</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3240-6905</orcidid><orcidid>https://orcid.org/0000-0001-6045-8636</orcidid><orcidid>https://orcid.org/0000-0002-7145-9324</orcidid><orcidid>https://orcid.org/0000000332406905</orcidid><orcidid>https://orcid.org/0000000271459324</orcidid><orcidid>https://orcid.org/0000000160458636</orcidid></search><sort><creationdate>20200728</creationdate><title>Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components</title><author>Guo, Jimin ; Agola, Jacob Ongudi ; Serda, Rita ; Franco, Stefan ; Lei, Qi ; Wang, Lu ; Minster, Joshua ; Croissant, Jonas G ; Butler, Kimberly S ; Zhu, Wei ; Brinker, C. Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a467t-6fd50777e7d3dd3cf1eae3eb6b60a5bba5908c0461800cccfc7d8112f6d497c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomimetics</topic><topic>Chick Embryo</topic><topic>Erythrocyte Membrane</topic><topic>Erythrocytes</topic><topic>Mice</topic><topic>Microfluidics</topic><topic>Pharmaceutical Preparations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jimin</creatorcontrib><creatorcontrib>Agola, Jacob Ongudi</creatorcontrib><creatorcontrib>Serda, Rita</creatorcontrib><creatorcontrib>Franco, Stefan</creatorcontrib><creatorcontrib>Lei, Qi</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Minster, Joshua</creatorcontrib><creatorcontrib>Croissant, Jonas G</creatorcontrib><creatorcontrib>Butler, Kimberly S</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Brinker, C. Jeffrey</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jimin</au><au>Agola, Jacob Ongudi</au><au>Serda, Rita</au><au>Franco, Stefan</au><au>Lei, Qi</au><au>Wang, Lu</au><au>Minster, Joshua</au><au>Croissant, Jonas G</au><au>Butler, Kimberly S</au><au>Zhu, Wei</au><au>Brinker, C. Jeffrey</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-07-28</date><risdate>2020</risdate><volume>14</volume><issue>7</issue><spage>7847</spage><epage>7859</epage><pages>7847-7859</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synthetic rebuilt red blood cells (RRBCs) that fully mimic the broad properties of native RBCs: size, biconcave shape, deformability, oxygen-carrying capacity, and long circulation time. Four successive nanoscale processing steps (RBC bioreplication, layer-by-layer polymer deposition, and precision silica etching, followed by RBC ghost membrane vesicle fusion) are employed for RRBC construction. A panel of physicochemical analyses including zeta-potential measurement, fluorescence microscopy, and antibody-mediated agglutination assay proved the recapitulation of RBC shape, size, and membrane structure. Flow-based deformation studies carried out in a microfluidic blood capillary model confirmed the ability of RRBCs to deform and pass through small slits and reconstitute themselves in a manner comparable to native RBCs. Circulation studies of RRBCs conducted ex ovo in a chick embryo and in vivo in a mouse model demonstrated the requirement of both deformability and native cell membrane surface to achieve long-term circulation. To confer additional non-native functionalities to RRBCs, we developed modular procedures with which to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP biosensors within the RRBC interior to enable various functions, including oxygen delivery, therapeutic drug delivery, magnetic manipulation, and toxin biosensing and detection. Taken together, RRBCs represent a class of long-circulating RBC-inspired artificial hybrid materials with a broad range of potential applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32391687</pmid><doi>10.1021/acsnano.9b08714</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3240-6905</orcidid><orcidid>https://orcid.org/0000-0001-6045-8636</orcidid><orcidid>https://orcid.org/0000-0002-7145-9324</orcidid><orcidid>https://orcid.org/0000000332406905</orcidid><orcidid>https://orcid.org/0000000271459324</orcidid><orcidid>https://orcid.org/0000000160458636</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2020-07, Vol.14 (7), p.7847-7859 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1639054 |
source | MEDLINE; ACS Publications |
subjects | Animals BASIC BIOLOGICAL SCIENCES Biomimetics Chick Embryo Erythrocyte Membrane Erythrocytes Mice Microfluidics Pharmaceutical Preparations |
title | Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20Rebuilding%20of%20Multifunctional%20Red%20Blood%20Cells:%20Modular%20Design%20Using%20Functional%20Components&rft.jtitle=ACS%20nano&rft.au=Guo,%20Jimin&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2020-07-28&rft.volume=14&rft.issue=7&rft.spage=7847&rft.epage=7859&rft.pages=7847-7859&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b08714&rft_dat=%3Cproquest_osti_%3E2401090625%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401090625&rft_id=info:pmid/32391687&rfr_iscdi=true |