Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components

The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-07, Vol.14 (7), p.7847-7859
Hauptverfasser: Guo, Jimin, Agola, Jacob Ongudi, Serda, Rita, Franco, Stefan, Lei, Qi, Wang, Lu, Minster, Joshua, Croissant, Jonas G, Butler, Kimberly S, Zhu, Wei, Brinker, C. Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7859
container_issue 7
container_start_page 7847
container_title ACS nano
container_volume 14
creator Guo, Jimin
Agola, Jacob Ongudi
Serda, Rita
Franco, Stefan
Lei, Qi
Wang, Lu
Minster, Joshua
Croissant, Jonas G
Butler, Kimberly S
Zhu, Wei
Brinker, C. Jeffrey
description The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synthetic rebuilt red blood cells (RRBCs) that fully mimic the broad properties of native RBCs: size, biconcave shape, deformability, oxygen-carrying capacity, and long circulation time. Four successive nanoscale processing steps (RBC bioreplication, layer-by-layer polymer deposition, and precision silica etching, followed by RBC ghost membrane vesicle fusion) are employed for RRBC construction. A panel of physicochemical analyses including zeta-potential measurement, fluorescence microscopy, and antibody-mediated agglutination assay proved the recapitulation of RBC shape, size, and membrane structure. Flow-based deformation studies carried out in a microfluidic blood capillary model confirmed the ability of RRBCs to deform and pass through small slits and reconstitute themselves in a manner comparable to native RBCs. Circulation studies of RRBCs conducted ex ovo in a chick embryo and in vivo in a mouse model demonstrated the requirement of both deformability and native cell membrane surface to achieve long-term circulation. To confer additional non-native functionalities to RRBCs, we developed modular procedures with which to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP biosensors within the RRBC interior to enable various functions, including oxygen delivery, therapeutic drug delivery, magnetic manipulation, and toxin biosensing and detection. Taken together, RRBCs represent a class of long-circulating RBC-inspired artificial hybrid materials with a broad range of potential applications.
doi_str_mv 10.1021/acsnano.9b08714
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1639054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2401090625</sourcerecordid><originalsourceid>FETCH-LOGICAL-a467t-6fd50777e7d3dd3cf1eae3eb6b60a5bba5908c0461800cccfc7d8112f6d497c93</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7P3qR4EqTbS38krTc3nQobgjjwFtIknRltMpv04H9vx-o8eXoP3uf7hfdB6BLDGEOEJ1w4w40d5wVkFCdHaIjzmISQkY_jw57iATpzbgOQ0oySUzSIozjHJKNDJKfa1rpWXovgTRWtrqQ268CWwbKtvC5bI7y2hlfdVQbTyloZzFRVubtgaWVb8SZ4UE6vTbByu-D8LzCz9dYaZbw7Ryclr5y66OcIreaP77PncPH69DK7X4Q8IdSHpJQpUEoVlbGUsSix4ipWBSkI8LQoeJpDJiAhOAMQQpSCygzjqCQyyanI4xG63vda5zVzQnslPoU1RgnPMIlzSJMOutlD28Z-tcp5Vmsnupe4UbZ1LEoAQw4kSjt0skdFY51rVMm2ja55880wsJ1_1vtnvf8ucdWXt0Wt5IH_Fd4Bt3ugS7KNbZvOlPu37gdsiJH7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401090625</pqid></control><display><type>article</type><title>Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components</title><source>MEDLINE</source><source>ACS Publications</source><creator>Guo, Jimin ; Agola, Jacob Ongudi ; Serda, Rita ; Franco, Stefan ; Lei, Qi ; Wang, Lu ; Minster, Joshua ; Croissant, Jonas G ; Butler, Kimberly S ; Zhu, Wei ; Brinker, C. Jeffrey</creator><creatorcontrib>Guo, Jimin ; Agola, Jacob Ongudi ; Serda, Rita ; Franco, Stefan ; Lei, Qi ; Wang, Lu ; Minster, Joshua ; Croissant, Jonas G ; Butler, Kimberly S ; Zhu, Wei ; Brinker, C. Jeffrey ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synthetic rebuilt red blood cells (RRBCs) that fully mimic the broad properties of native RBCs: size, biconcave shape, deformability, oxygen-carrying capacity, and long circulation time. Four successive nanoscale processing steps (RBC bioreplication, layer-by-layer polymer deposition, and precision silica etching, followed by RBC ghost membrane vesicle fusion) are employed for RRBC construction. A panel of physicochemical analyses including zeta-potential measurement, fluorescence microscopy, and antibody-mediated agglutination assay proved the recapitulation of RBC shape, size, and membrane structure. Flow-based deformation studies carried out in a microfluidic blood capillary model confirmed the ability of RRBCs to deform and pass through small slits and reconstitute themselves in a manner comparable to native RBCs. Circulation studies of RRBCs conducted ex ovo in a chick embryo and in vivo in a mouse model demonstrated the requirement of both deformability and native cell membrane surface to achieve long-term circulation. To confer additional non-native functionalities to RRBCs, we developed modular procedures with which to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP biosensors within the RRBC interior to enable various functions, including oxygen delivery, therapeutic drug delivery, magnetic manipulation, and toxin biosensing and detection. Taken together, RRBCs represent a class of long-circulating RBC-inspired artificial hybrid materials with a broad range of potential applications.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b08714</identifier><identifier>PMID: 32391687</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; BASIC BIOLOGICAL SCIENCES ; Biomimetics ; Chick Embryo ; Erythrocyte Membrane ; Erythrocytes ; Mice ; Microfluidics ; Pharmaceutical Preparations</subject><ispartof>ACS nano, 2020-07, Vol.14 (7), p.7847-7859</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a467t-6fd50777e7d3dd3cf1eae3eb6b60a5bba5908c0461800cccfc7d8112f6d497c93</citedby><cites>FETCH-LOGICAL-a467t-6fd50777e7d3dd3cf1eae3eb6b60a5bba5908c0461800cccfc7d8112f6d497c93</cites><orcidid>0000-0003-3240-6905 ; 0000-0001-6045-8636 ; 0000-0002-7145-9324 ; 0000000332406905 ; 0000000271459324 ; 0000000160458636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b08714$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b08714$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32391687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1639054$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jimin</creatorcontrib><creatorcontrib>Agola, Jacob Ongudi</creatorcontrib><creatorcontrib>Serda, Rita</creatorcontrib><creatorcontrib>Franco, Stefan</creatorcontrib><creatorcontrib>Lei, Qi</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Minster, Joshua</creatorcontrib><creatorcontrib>Croissant, Jonas G</creatorcontrib><creatorcontrib>Butler, Kimberly S</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Brinker, C. Jeffrey</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synthetic rebuilt red blood cells (RRBCs) that fully mimic the broad properties of native RBCs: size, biconcave shape, deformability, oxygen-carrying capacity, and long circulation time. Four successive nanoscale processing steps (RBC bioreplication, layer-by-layer polymer deposition, and precision silica etching, followed by RBC ghost membrane vesicle fusion) are employed for RRBC construction. A panel of physicochemical analyses including zeta-potential measurement, fluorescence microscopy, and antibody-mediated agglutination assay proved the recapitulation of RBC shape, size, and membrane structure. Flow-based deformation studies carried out in a microfluidic blood capillary model confirmed the ability of RRBCs to deform and pass through small slits and reconstitute themselves in a manner comparable to native RBCs. Circulation studies of RRBCs conducted ex ovo in a chick embryo and in vivo in a mouse model demonstrated the requirement of both deformability and native cell membrane surface to achieve long-term circulation. To confer additional non-native functionalities to RRBCs, we developed modular procedures with which to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP biosensors within the RRBC interior to enable various functions, including oxygen delivery, therapeutic drug delivery, magnetic manipulation, and toxin biosensing and detection. Taken together, RRBCs represent a class of long-circulating RBC-inspired artificial hybrid materials with a broad range of potential applications.</description><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomimetics</subject><subject>Chick Embryo</subject><subject>Erythrocyte Membrane</subject><subject>Erythrocytes</subject><subject>Mice</subject><subject>Microfluidics</subject><subject>Pharmaceutical Preparations</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4Mobk7P3qR4EqTbS38krTc3nQobgjjwFtIknRltMpv04H9vx-o8eXoP3uf7hfdB6BLDGEOEJ1w4w40d5wVkFCdHaIjzmISQkY_jw57iATpzbgOQ0oySUzSIozjHJKNDJKfa1rpWXovgTRWtrqQ268CWwbKtvC5bI7y2hlfdVQbTyloZzFRVubtgaWVb8SZ4UE6vTbByu-D8LzCz9dYaZbw7Ryclr5y66OcIreaP77PncPH69DK7X4Q8IdSHpJQpUEoVlbGUsSix4ipWBSkI8LQoeJpDJiAhOAMQQpSCygzjqCQyyanI4xG63vda5zVzQnslPoU1RgnPMIlzSJMOutlD28Z-tcp5Vmsnupe4UbZ1LEoAQw4kSjt0skdFY51rVMm2ja55880wsJ1_1vtnvf8ucdWXt0Wt5IH_Fd4Bt3ugS7KNbZvOlPu37gdsiJH7</recordid><startdate>20200728</startdate><enddate>20200728</enddate><creator>Guo, Jimin</creator><creator>Agola, Jacob Ongudi</creator><creator>Serda, Rita</creator><creator>Franco, Stefan</creator><creator>Lei, Qi</creator><creator>Wang, Lu</creator><creator>Minster, Joshua</creator><creator>Croissant, Jonas G</creator><creator>Butler, Kimberly S</creator><creator>Zhu, Wei</creator><creator>Brinker, C. Jeffrey</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3240-6905</orcidid><orcidid>https://orcid.org/0000-0001-6045-8636</orcidid><orcidid>https://orcid.org/0000-0002-7145-9324</orcidid><orcidid>https://orcid.org/0000000332406905</orcidid><orcidid>https://orcid.org/0000000271459324</orcidid><orcidid>https://orcid.org/0000000160458636</orcidid></search><sort><creationdate>20200728</creationdate><title>Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components</title><author>Guo, Jimin ; Agola, Jacob Ongudi ; Serda, Rita ; Franco, Stefan ; Lei, Qi ; Wang, Lu ; Minster, Joshua ; Croissant, Jonas G ; Butler, Kimberly S ; Zhu, Wei ; Brinker, C. Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a467t-6fd50777e7d3dd3cf1eae3eb6b60a5bba5908c0461800cccfc7d8112f6d497c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomimetics</topic><topic>Chick Embryo</topic><topic>Erythrocyte Membrane</topic><topic>Erythrocytes</topic><topic>Mice</topic><topic>Microfluidics</topic><topic>Pharmaceutical Preparations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jimin</creatorcontrib><creatorcontrib>Agola, Jacob Ongudi</creatorcontrib><creatorcontrib>Serda, Rita</creatorcontrib><creatorcontrib>Franco, Stefan</creatorcontrib><creatorcontrib>Lei, Qi</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Minster, Joshua</creatorcontrib><creatorcontrib>Croissant, Jonas G</creatorcontrib><creatorcontrib>Butler, Kimberly S</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Brinker, C. Jeffrey</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jimin</au><au>Agola, Jacob Ongudi</au><au>Serda, Rita</au><au>Franco, Stefan</au><au>Lei, Qi</au><au>Wang, Lu</au><au>Minster, Joshua</au><au>Croissant, Jonas G</au><au>Butler, Kimberly S</au><au>Zhu, Wei</au><au>Brinker, C. Jeffrey</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-07-28</date><risdate>2020</risdate><volume>14</volume><issue>7</issue><spage>7847</spage><epage>7859</epage><pages>7847-7859</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The design and synthesis of artificial materials that mimic the structures, mechanical properties, and ultimately functionalities of biological cells remains a current holy grail of materials science. Here, based on a silica cell bioreplication approach, we report the design and construction of synthetic rebuilt red blood cells (RRBCs) that fully mimic the broad properties of native RBCs: size, biconcave shape, deformability, oxygen-carrying capacity, and long circulation time. Four successive nanoscale processing steps (RBC bioreplication, layer-by-layer polymer deposition, and precision silica etching, followed by RBC ghost membrane vesicle fusion) are employed for RRBC construction. A panel of physicochemical analyses including zeta-potential measurement, fluorescence microscopy, and antibody-mediated agglutination assay proved the recapitulation of RBC shape, size, and membrane structure. Flow-based deformation studies carried out in a microfluidic blood capillary model confirmed the ability of RRBCs to deform and pass through small slits and reconstitute themselves in a manner comparable to native RBCs. Circulation studies of RRBCs conducted ex ovo in a chick embryo and in vivo in a mouse model demonstrated the requirement of both deformability and native cell membrane surface to achieve long-term circulation. To confer additional non-native functionalities to RRBCs, we developed modular procedures with which to load functional cargos such as hemoglobin, drugs, magnetic nanoparticles, and ATP biosensors within the RRBC interior to enable various functions, including oxygen delivery, therapeutic drug delivery, magnetic manipulation, and toxin biosensing and detection. Taken together, RRBCs represent a class of long-circulating RBC-inspired artificial hybrid materials with a broad range of potential applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32391687</pmid><doi>10.1021/acsnano.9b08714</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3240-6905</orcidid><orcidid>https://orcid.org/0000-0001-6045-8636</orcidid><orcidid>https://orcid.org/0000-0002-7145-9324</orcidid><orcidid>https://orcid.org/0000000332406905</orcidid><orcidid>https://orcid.org/0000000271459324</orcidid><orcidid>https://orcid.org/0000000160458636</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-07, Vol.14 (7), p.7847-7859
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1639054
source MEDLINE; ACS Publications
subjects Animals
BASIC BIOLOGICAL SCIENCES
Biomimetics
Chick Embryo
Erythrocyte Membrane
Erythrocytes
Mice
Microfluidics
Pharmaceutical Preparations
title Biomimetic Rebuilding of Multifunctional Red Blood Cells: Modular Design Using Functional Components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20Rebuilding%20of%20Multifunctional%20Red%20Blood%20Cells:%20Modular%20Design%20Using%20Functional%20Components&rft.jtitle=ACS%20nano&rft.au=Guo,%20Jimin&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2020-07-28&rft.volume=14&rft.issue=7&rft.spage=7847&rft.epage=7859&rft.pages=7847-7859&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b08714&rft_dat=%3Cproquest_osti_%3E2401090625%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401090625&rft_id=info:pmid/32391687&rfr_iscdi=true