Passivating contacts for crystalline silicon solar cells

The global photovoltaic (PV) market is dominated by crystalline silicon (c-Si) based technologies with heavily doped, directly metallized contacts. Recombination of photo-generated electrons and holes at the contact regions is increasingly constraining the power conversion efficiencies of these devi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy 2019-11, Vol.4 (11), p.914-928
Hauptverfasser: Allen, Thomas G., Bullock, James, Yang, Xinbo, Javey, Ali, De Wolf, Stefaan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 928
container_issue 11
container_start_page 914
container_title Nature energy
container_volume 4
creator Allen, Thomas G.
Bullock, James
Yang, Xinbo
Javey, Ali
De Wolf, Stefaan
description The global photovoltaic (PV) market is dominated by crystalline silicon (c-Si) based technologies with heavily doped, directly metallized contacts. Recombination of photo-generated electrons and holes at the contact regions is increasingly constraining the power conversion efficiencies of these devices as other performance-limiting energy losses are overcome. To move forward, c-Si PV technologies must implement alternative contacting approaches. Passivating contacts, which incorporate thin films within the contact structure that simultaneously supress recombination and promote charge-carrier selectivity, are a promising next step for the mainstream c-Si PV industry. In this work, we review the fundamental physical processes governing contact formation in c-Si. In doing so we identify the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization. Strategies towards the implementation of passivating contacts in industrial environments are discussed. The development of passivating contacts holds great potential for enhancing the power conversion efficiency of silicon photovoltaics. Here, De Wolf et al. review recent advances in material design and device architecture, and discuss technical challenges to industrial fabrication.
doi_str_mv 10.1038/s41560-019-0463-6
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1638999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314540303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-dff2dea45f8888c046c20ec7ad15ec905c1600baf83c47efb4865b1f3effe7403</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLdFz6uTv5s9SlErFPSg55CmSU1Zd2smFfrtTVlBL85lBub3Ho9HyCWFGwpc36KgUkENtK1BKF6rEzJhIHXdSKFO_9znZIa4BQDWMiY1nRD9YhHjl82x31Ru6LN1GaswpMqlA2bbdbH3FcYulmeFQ2fLx3cdXpCzYDv0s589JW8P96_zRb18fnya3y1rJyTL9ToEtvZWyKDLuBLPMfCusWsqvWtBOqoAVjZo7kTjw0poJVc0cB-CbwTwKbkafQfM0aCL2bv3kqX3LhuquG7btkDXI7RLw-feYzbbYZ_6ksswToUsPsALRUfKpQEx-WB2KX7YdDAUzLFIMxZpSpHmWKRRRcNGDRa23_j06_y_6BuIvHVW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314540303</pqid></control><display><type>article</type><title>Passivating contacts for crystalline silicon solar cells</title><source>Springer Nature - Complete Springer Journals</source><creator>Allen, Thomas G. ; Bullock, James ; Yang, Xinbo ; Javey, Ali ; De Wolf, Stefaan</creator><creatorcontrib>Allen, Thomas G. ; Bullock, James ; Yang, Xinbo ; Javey, Ali ; De Wolf, Stefaan ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The global photovoltaic (PV) market is dominated by crystalline silicon (c-Si) based technologies with heavily doped, directly metallized contacts. Recombination of photo-generated electrons and holes at the contact regions is increasingly constraining the power conversion efficiencies of these devices as other performance-limiting energy losses are overcome. To move forward, c-Si PV technologies must implement alternative contacting approaches. Passivating contacts, which incorporate thin films within the contact structure that simultaneously supress recombination and promote charge-carrier selectivity, are a promising next step for the mainstream c-Si PV industry. In this work, we review the fundamental physical processes governing contact formation in c-Si. In doing so we identify the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization. Strategies towards the implementation of passivating contacts in industrial environments are discussed. The development of passivating contacts holds great potential for enhancing the power conversion efficiency of silicon photovoltaics. Here, De Wolf et al. review recent advances in material design and device architecture, and discuss technical challenges to industrial fabrication.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-019-0463-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/4077/909/4101/4096/946 ; 639/624/1075/524 ; Economics and Management ; electronic devices ; Energy ; Energy Policy ; Energy Storage ; Energy Systems ; Photovoltaic cells ; Photovoltaics ; Renewable and Green Energy ; Review Article ; Silicon ; Solar cells ; SOLAR ENERGY ; solar energy and photovoltaic technology ; Thin films</subject><ispartof>Nature energy, 2019-11, Vol.4 (11), p.914-928</ispartof><rights>Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-dff2dea45f8888c046c20ec7ad15ec905c1600baf83c47efb4865b1f3effe7403</citedby><cites>FETCH-LOGICAL-c452t-dff2dea45f8888c046c20ec7ad15ec905c1600baf83c47efb4865b1f3effe7403</cites><orcidid>0000-0003-1619-9061 ; 0000-0001-7903-9642 ; 0000000179039642 ; 0000000316199061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41560-019-0463-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41560-019-0463-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1638999$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Allen, Thomas G.</creatorcontrib><creatorcontrib>Bullock, James</creatorcontrib><creatorcontrib>Yang, Xinbo</creatorcontrib><creatorcontrib>Javey, Ali</creatorcontrib><creatorcontrib>De Wolf, Stefaan</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Passivating contacts for crystalline silicon solar cells</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>The global photovoltaic (PV) market is dominated by crystalline silicon (c-Si) based technologies with heavily doped, directly metallized contacts. Recombination of photo-generated electrons and holes at the contact regions is increasingly constraining the power conversion efficiencies of these devices as other performance-limiting energy losses are overcome. To move forward, c-Si PV technologies must implement alternative contacting approaches. Passivating contacts, which incorporate thin films within the contact structure that simultaneously supress recombination and promote charge-carrier selectivity, are a promising next step for the mainstream c-Si PV industry. In this work, we review the fundamental physical processes governing contact formation in c-Si. In doing so we identify the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization. Strategies towards the implementation of passivating contacts in industrial environments are discussed. The development of passivating contacts holds great potential for enhancing the power conversion efficiency of silicon photovoltaics. Here, De Wolf et al. review recent advances in material design and device architecture, and discuss technical challenges to industrial fabrication.</description><subject>639/301/1005/1007</subject><subject>639/4077/909/4101/4096/946</subject><subject>639/624/1075/524</subject><subject>Economics and Management</subject><subject>electronic devices</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Renewable and Green Energy</subject><subject>Review Article</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>SOLAR ENERGY</subject><subject>solar energy and photovoltaic technology</subject><subject>Thin films</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWGo_gLdFz6uTv5s9SlErFPSg55CmSU1Zd2smFfrtTVlBL85lBub3Ho9HyCWFGwpc36KgUkENtK1BKF6rEzJhIHXdSKFO_9znZIa4BQDWMiY1nRD9YhHjl82x31Ru6LN1GaswpMqlA2bbdbH3FcYulmeFQ2fLx3cdXpCzYDv0s589JW8P96_zRb18fnya3y1rJyTL9ToEtvZWyKDLuBLPMfCusWsqvWtBOqoAVjZo7kTjw0poJVc0cB-CbwTwKbkafQfM0aCL2bv3kqX3LhuquG7btkDXI7RLw-feYzbbYZ_6ksswToUsPsALRUfKpQEx-WB2KX7YdDAUzLFIMxZpSpHmWKRRRcNGDRa23_j06_y_6BuIvHVW</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Allen, Thomas G.</creator><creator>Bullock, James</creator><creator>Yang, Xinbo</creator><creator>Javey, Ali</creator><creator>De Wolf, Stefaan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1619-9061</orcidid><orcidid>https://orcid.org/0000-0001-7903-9642</orcidid><orcidid>https://orcid.org/0000000179039642</orcidid><orcidid>https://orcid.org/0000000316199061</orcidid></search><sort><creationdate>20191101</creationdate><title>Passivating contacts for crystalline silicon solar cells</title><author>Allen, Thomas G. ; Bullock, James ; Yang, Xinbo ; Javey, Ali ; De Wolf, Stefaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-dff2dea45f8888c046c20ec7ad15ec905c1600baf83c47efb4865b1f3effe7403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1005/1007</topic><topic>639/4077/909/4101/4096/946</topic><topic>639/624/1075/524</topic><topic>Economics and Management</topic><topic>electronic devices</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Renewable and Green Energy</topic><topic>Review Article</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>SOLAR ENERGY</topic><topic>solar energy and photovoltaic technology</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allen, Thomas G.</creatorcontrib><creatorcontrib>Bullock, James</creatorcontrib><creatorcontrib>Yang, Xinbo</creatorcontrib><creatorcontrib>Javey, Ali</creatorcontrib><creatorcontrib>De Wolf, Stefaan</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allen, Thomas G.</au><au>Bullock, James</au><au>Yang, Xinbo</au><au>Javey, Ali</au><au>De Wolf, Stefaan</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passivating contacts for crystalline silicon solar cells</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>4</volume><issue>11</issue><spage>914</spage><epage>928</epage><pages>914-928</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>The global photovoltaic (PV) market is dominated by crystalline silicon (c-Si) based technologies with heavily doped, directly metallized contacts. Recombination of photo-generated electrons and holes at the contact regions is increasingly constraining the power conversion efficiencies of these devices as other performance-limiting energy losses are overcome. To move forward, c-Si PV technologies must implement alternative contacting approaches. Passivating contacts, which incorporate thin films within the contact structure that simultaneously supress recombination and promote charge-carrier selectivity, are a promising next step for the mainstream c-Si PV industry. In this work, we review the fundamental physical processes governing contact formation in c-Si. In doing so we identify the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization. Strategies towards the implementation of passivating contacts in industrial environments are discussed. The development of passivating contacts holds great potential for enhancing the power conversion efficiency of silicon photovoltaics. Here, De Wolf et al. review recent advances in material design and device architecture, and discuss technical challenges to industrial fabrication.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-019-0463-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1619-9061</orcidid><orcidid>https://orcid.org/0000-0001-7903-9642</orcidid><orcidid>https://orcid.org/0000000179039642</orcidid><orcidid>https://orcid.org/0000000316199061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature energy, 2019-11, Vol.4 (11), p.914-928
issn 2058-7546
2058-7546
language eng
recordid cdi_osti_scitechconnect_1638999
source Springer Nature - Complete Springer Journals
subjects 639/301/1005/1007
639/4077/909/4101/4096/946
639/624/1075/524
Economics and Management
electronic devices
Energy
Energy Policy
Energy Storage
Energy Systems
Photovoltaic cells
Photovoltaics
Renewable and Green Energy
Review Article
Silicon
Solar cells
SOLAR ENERGY
solar energy and photovoltaic technology
Thin films
title Passivating contacts for crystalline silicon solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passivating%20contacts%20for%20crystalline%20silicon%20solar%20cells&rft.jtitle=Nature%20energy&rft.au=Allen,%20Thomas%20G.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-11-01&rft.volume=4&rft.issue=11&rft.spage=914&rft.epage=928&rft.pages=914-928&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-019-0463-6&rft_dat=%3Cproquest_osti_%3E2314540303%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314540303&rft_id=info:pmid/&rfr_iscdi=true