Speeding up particle track reconstruction using a parallel Kalman filter algorithm
One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is determining the trajectory of charged particles during event reconstruction. Algorithms used at the LHC today rely on Kalman filtering, which builds physical trajectories increment...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2020-09, Vol.15 (9), p.P09030-P09030 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | P09030 |
---|---|
container_issue | 9 |
container_start_page | P09030 |
container_title | Journal of instrumentation |
container_volume | 15 |
creator | Lantz, S. McDermott, K. Reid, M. Riley, D. Wittich, P. Berkman, S. Cerati, G. Kortelainen, M. Hall, A. Reinsvold Elmer, P. Wang, B. Giannini, L. Krutelyov, V. Masciovecchio, M. Tadel, M. Würthwein, F. Yagil, A. Gravelle, B. Norris, B. |
description | One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is determining the trajectory of charged particles during event reconstruction. Algorithms used at the LHC today rely on Kalman filtering, which builds physical trajectories incrementally while incorporating material effects and error estimation. Recognizing the need for faster computational throughput, we have adapted Kalman-filter-based methods for highly parallel, many-core SIMD architectures that are now prevalent in high-performance hardware. In this paper, we discuss the design and performance of the improved tracking algorithm, referred to as MKFIT. A key piece of the algorithm is the MATRIPLEX library, containing dedicated code to optimally vectorize operations on small matrices. The physics performance of the MKFIT algorithm is comparable to the nominal CMS tracking algorithm when reconstructing tracks from simulated proton-proton collisions within the CMS detector. We study the scaling of the algorithm as a function of the parallel resources utilized and find large speedups both from vectorization and multi-threading. MKFIT achieves a speedup of a factor of 6 compared to the nominal algorithm when run in a single-threaded application within the CMS software framework. |
doi_str_mv | 10.1088/1748-0221/15/09/P09030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1638954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444651087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-13d1f1318b88cff503e2fea7e46fb371a7a3dd70587f5fb6dfc55e988a096e8a3</originalsourceid><addsrcrecordid>eNpNkNtKxDAQhoMouB5eQYJe1yZN06aXsnjCBcXDdcimk92s2aYm6YVvb0tFvJqB-fj550PogpJrSoTIaV2KjBQFzSnPSZO_kIYwcoAWf4fDf_sxOolxRwhveEkW6PWtB2htt8FDj3sVktUOcApKf-IA2ncxhUEn6zs8xAlTE6WcA4eflNurDhvrEgSs3MYHm7b7M3RklItw_jtP0cfd7fvyIVs93z8ub1aZZlykjLKWGsqoWAuhjeGEQWFA1VBWZs1qqmrF2rYmXNSGm3XVGs05NEIo0lQgFDtFl3Ouj8nKqG0CvR0bd6CTpBUT44cjdDVDffBfA8Qkd34I3dhLFmVZVnxUWI9UNVM6-BgDGNkHu1fhW1IiJ8ly8icnf5JySRo5S2Y_lC1wLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444651087</pqid></control><display><type>article</type><title>Speeding up particle track reconstruction using a parallel Kalman filter algorithm</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Lantz, S. ; McDermott, K. ; Reid, M. ; Riley, D. ; Wittich, P. ; Berkman, S. ; Cerati, G. ; Kortelainen, M. ; Hall, A. Reinsvold ; Elmer, P. ; Wang, B. ; Giannini, L. ; Krutelyov, V. ; Masciovecchio, M. ; Tadel, M. ; Würthwein, F. ; Yagil, A. ; Gravelle, B. ; Norris, B.</creator><creatorcontrib>Lantz, S. ; McDermott, K. ; Reid, M. ; Riley, D. ; Wittich, P. ; Berkman, S. ; Cerati, G. ; Kortelainen, M. ; Hall, A. Reinsvold ; Elmer, P. ; Wang, B. ; Giannini, L. ; Krutelyov, V. ; Masciovecchio, M. ; Tadel, M. ; Würthwein, F. ; Yagil, A. ; Gravelle, B. ; Norris, B. ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><description>One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is determining the trajectory of charged particles during event reconstruction. Algorithms used at the LHC today rely on Kalman filtering, which builds physical trajectories incrementally while incorporating material effects and error estimation. Recognizing the need for faster computational throughput, we have adapted Kalman-filter-based methods for highly parallel, many-core SIMD architectures that are now prevalent in high-performance hardware. In this paper, we discuss the design and performance of the improved tracking algorithm, referred to as MKFIT. A key piece of the algorithm is the MATRIPLEX library, containing dedicated code to optimally vectorize operations on small matrices. The physics performance of the MKFIT algorithm is comparable to the nominal CMS tracking algorithm when reconstructing tracks from simulated proton-proton collisions within the CMS detector. We study the scaling of the algorithm as a function of the parallel resources utilized and find large speedups both from vectorization and multi-threading. MKFIT achieves a speedup of a factor of 6 compared to the nominal algorithm when run in a single-threaded application within the CMS software framework.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/15/09/P09030</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accident reconstruction ; Algorithms ; Charged particles ; Computer simulation ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Kalman filters ; Large Hadron Collider ; Luminosity ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Particle collisions ; Particle tracking ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Protons ; Solenoids ; Vector processing (computers)</subject><ispartof>Journal of instrumentation, 2020-09, Vol.15 (9), p.P09030-P09030</ispartof><rights>Copyright IOP Publishing Sep 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-13d1f1318b88cff503e2fea7e46fb371a7a3dd70587f5fb6dfc55e988a096e8a3</citedby><cites>FETCH-LOGICAL-c358t-13d1f1318b88cff503e2fea7e46fb371a7a3dd70587f5fb6dfc55e988a096e8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1638954$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lantz, S.</creatorcontrib><creatorcontrib>McDermott, K.</creatorcontrib><creatorcontrib>Reid, M.</creatorcontrib><creatorcontrib>Riley, D.</creatorcontrib><creatorcontrib>Wittich, P.</creatorcontrib><creatorcontrib>Berkman, S.</creatorcontrib><creatorcontrib>Cerati, G.</creatorcontrib><creatorcontrib>Kortelainen, M.</creatorcontrib><creatorcontrib>Hall, A. Reinsvold</creatorcontrib><creatorcontrib>Elmer, P.</creatorcontrib><creatorcontrib>Wang, B.</creatorcontrib><creatorcontrib>Giannini, L.</creatorcontrib><creatorcontrib>Krutelyov, V.</creatorcontrib><creatorcontrib>Masciovecchio, M.</creatorcontrib><creatorcontrib>Tadel, M.</creatorcontrib><creatorcontrib>Würthwein, F.</creatorcontrib><creatorcontrib>Yagil, A.</creatorcontrib><creatorcontrib>Gravelle, B.</creatorcontrib><creatorcontrib>Norris, B.</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><title>Speeding up particle track reconstruction using a parallel Kalman filter algorithm</title><title>Journal of instrumentation</title><description>One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is determining the trajectory of charged particles during event reconstruction. Algorithms used at the LHC today rely on Kalman filtering, which builds physical trajectories incrementally while incorporating material effects and error estimation. Recognizing the need for faster computational throughput, we have adapted Kalman-filter-based methods for highly parallel, many-core SIMD architectures that are now prevalent in high-performance hardware. In this paper, we discuss the design and performance of the improved tracking algorithm, referred to as MKFIT. A key piece of the algorithm is the MATRIPLEX library, containing dedicated code to optimally vectorize operations on small matrices. The physics performance of the MKFIT algorithm is comparable to the nominal CMS tracking algorithm when reconstructing tracks from simulated proton-proton collisions within the CMS detector. We study the scaling of the algorithm as a function of the parallel resources utilized and find large speedups both from vectorization and multi-threading. MKFIT achieves a speedup of a factor of 6 compared to the nominal algorithm when run in a single-threaded application within the CMS software framework.</description><subject>Accident reconstruction</subject><subject>Algorithms</subject><subject>Charged particles</subject><subject>Computer simulation</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Kalman filters</subject><subject>Large Hadron Collider</subject><subject>Luminosity</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Particle collisions</subject><subject>Particle tracking</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Protons</subject><subject>Solenoids</subject><subject>Vector processing (computers)</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkNtKxDAQhoMouB5eQYJe1yZN06aXsnjCBcXDdcimk92s2aYm6YVvb0tFvJqB-fj550PogpJrSoTIaV2KjBQFzSnPSZO_kIYwcoAWf4fDf_sxOolxRwhveEkW6PWtB2htt8FDj3sVktUOcApKf-IA2ncxhUEn6zs8xAlTE6WcA4eflNurDhvrEgSs3MYHm7b7M3RklItw_jtP0cfd7fvyIVs93z8ub1aZZlykjLKWGsqoWAuhjeGEQWFA1VBWZs1qqmrF2rYmXNSGm3XVGs05NEIo0lQgFDtFl3Ouj8nKqG0CvR0bd6CTpBUT44cjdDVDffBfA8Qkd34I3dhLFmVZVnxUWI9UNVM6-BgDGNkHu1fhW1IiJ8ly8icnf5JySRo5S2Y_lC1wLA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Lantz, S.</creator><creator>McDermott, K.</creator><creator>Reid, M.</creator><creator>Riley, D.</creator><creator>Wittich, P.</creator><creator>Berkman, S.</creator><creator>Cerati, G.</creator><creator>Kortelainen, M.</creator><creator>Hall, A. Reinsvold</creator><creator>Elmer, P.</creator><creator>Wang, B.</creator><creator>Giannini, L.</creator><creator>Krutelyov, V.</creator><creator>Masciovecchio, M.</creator><creator>Tadel, M.</creator><creator>Würthwein, F.</creator><creator>Yagil, A.</creator><creator>Gravelle, B.</creator><creator>Norris, B.</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200901</creationdate><title>Speeding up particle track reconstruction using a parallel Kalman filter algorithm</title><author>Lantz, S. ; McDermott, K. ; Reid, M. ; Riley, D. ; Wittich, P. ; Berkman, S. ; Cerati, G. ; Kortelainen, M. ; Hall, A. Reinsvold ; Elmer, P. ; Wang, B. ; Giannini, L. ; Krutelyov, V. ; Masciovecchio, M. ; Tadel, M. ; Würthwein, F. ; Yagil, A. ; Gravelle, B. ; Norris, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-13d1f1318b88cff503e2fea7e46fb371a7a3dd70587f5fb6dfc55e988a096e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accident reconstruction</topic><topic>Algorithms</topic><topic>Charged particles</topic><topic>Computer simulation</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Kalman filters</topic><topic>Large Hadron Collider</topic><topic>Luminosity</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Particle collisions</topic><topic>Particle tracking</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Protons</topic><topic>Solenoids</topic><topic>Vector processing (computers)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lantz, S.</creatorcontrib><creatorcontrib>McDermott, K.</creatorcontrib><creatorcontrib>Reid, M.</creatorcontrib><creatorcontrib>Riley, D.</creatorcontrib><creatorcontrib>Wittich, P.</creatorcontrib><creatorcontrib>Berkman, S.</creatorcontrib><creatorcontrib>Cerati, G.</creatorcontrib><creatorcontrib>Kortelainen, M.</creatorcontrib><creatorcontrib>Hall, A. Reinsvold</creatorcontrib><creatorcontrib>Elmer, P.</creatorcontrib><creatorcontrib>Wang, B.</creatorcontrib><creatorcontrib>Giannini, L.</creatorcontrib><creatorcontrib>Krutelyov, V.</creatorcontrib><creatorcontrib>Masciovecchio, M.</creatorcontrib><creatorcontrib>Tadel, M.</creatorcontrib><creatorcontrib>Würthwein, F.</creatorcontrib><creatorcontrib>Yagil, A.</creatorcontrib><creatorcontrib>Gravelle, B.</creatorcontrib><creatorcontrib>Norris, B.</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lantz, S.</au><au>McDermott, K.</au><au>Reid, M.</au><au>Riley, D.</au><au>Wittich, P.</au><au>Berkman, S.</au><au>Cerati, G.</au><au>Kortelainen, M.</au><au>Hall, A. Reinsvold</au><au>Elmer, P.</au><au>Wang, B.</au><au>Giannini, L.</au><au>Krutelyov, V.</au><au>Masciovecchio, M.</au><au>Tadel, M.</au><au>Würthwein, F.</au><au>Yagil, A.</au><au>Gravelle, B.</au><au>Norris, B.</au><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speeding up particle track reconstruction using a parallel Kalman filter algorithm</atitle><jtitle>Journal of instrumentation</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>15</volume><issue>9</issue><spage>P09030</spage><epage>P09030</epage><pages>P09030-P09030</pages><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>One of the most computationally challenging problems expected for the High-Luminosity Large Hadron Collider (HL-LHC) is determining the trajectory of charged particles during event reconstruction. Algorithms used at the LHC today rely on Kalman filtering, which builds physical trajectories incrementally while incorporating material effects and error estimation. Recognizing the need for faster computational throughput, we have adapted Kalman-filter-based methods for highly parallel, many-core SIMD architectures that are now prevalent in high-performance hardware. In this paper, we discuss the design and performance of the improved tracking algorithm, referred to as MKFIT. A key piece of the algorithm is the MATRIPLEX library, containing dedicated code to optimally vectorize operations on small matrices. The physics performance of the MKFIT algorithm is comparable to the nominal CMS tracking algorithm when reconstructing tracks from simulated proton-proton collisions within the CMS detector. We study the scaling of the algorithm as a function of the parallel resources utilized and find large speedups both from vectorization and multi-threading. MKFIT achieves a speedup of a factor of 6 compared to the nominal algorithm when run in a single-threaded application within the CMS software framework.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/15/09/P09030</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2020-09, Vol.15 (9), p.P09030-P09030 |
issn | 1748-0221 1748-0221 |
language | eng |
recordid | cdi_osti_scitechconnect_1638954 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Accident reconstruction Algorithms Charged particles Computer simulation INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Kalman filters Large Hadron Collider Luminosity Mathematical analysis Matrix algebra Matrix methods Particle collisions Particle tracking PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Protons Solenoids Vector processing (computers) |
title | Speeding up particle track reconstruction using a parallel Kalman filter algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speeding%20up%20particle%20track%20reconstruction%20using%20a%20parallel%20Kalman%20filter%20algorithm&rft.jtitle=Journal%20of%20instrumentation&rft.au=Lantz,%20S.&rft.aucorp=Fermi%20National%20Accelerator%20Laboratory%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2020-09-01&rft.volume=15&rft.issue=9&rft.spage=P09030&rft.epage=P09030&rft.pages=P09030-P09030&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/15/09/P09030&rft_dat=%3Cproquest_osti_%3E2444651087%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444651087&rft_id=info:pmid/&rfr_iscdi=true |