Thermoelectric transport of semiconductor full-Heusler VFe 2 Al
The full-Heusler VFe 2 Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe 2 Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe 2 Al has often been described as a semim...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-08, Vol.8 (30), p.10174-10184 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10184 |
---|---|
container_issue | 30 |
container_start_page | 10174 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 8 |
creator | Anand, Shashwat Gurunathan, Ramya Soldi, Thomas Borgsmiller, Leah Orenstein, Rachel Snyder, G. Jeffrey |
description | The full-Heusler VFe
2
Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe
2
Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe
2
Al has often been described as a semimetal, here we show the electronic and thermal properties of VFe
2
Al can be explained by considering VFe
2
Al as a valence precise semiconductor like many other thermoelectric materials but with a very small band gap (
E
g
= 0.03 ± 0.01 eV). Using a two-band model for electrical transport and point-defect scattering model for thermal transport we analyze the thermoelectric properties of bulk full-Heusler VFe
2
Al. We demonstrate that a semiconductor transport model can explain the compilation of data from a variety of n and p-type VFe
2
Al compositions assuming a small band-gap between 0.02 eV and 0.04 eV. In this small
E
g
semiconductor understanding, the model suggests that nominally undoped VFe
2
Al samples appear metallic because of intrinsic defects of the order of ∼10
20
defects per cm
−3
. We rationalize the observed trends in weighted mobilities (
μ
w
) with dopant atoms from a molecular orbital understanding of the electronic structure. We use a phonon-point-defect scattering model to understand the dopant-concentration (and, therefore, the carrier-concentration) dependence of thermal conductivity. The electrical and thermal models developed allow us to predict the
zT versus
carrier concentration curve for this material, which maps well to reported experimental investigations. |
doi_str_mv | 10.1039/D0TC02659J |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1638528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D0TC02659J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1038-4ea39ba08207447787f86cc2b2a5782368b147828abc45ea55ddea3635bde1913</originalsourceid><addsrcrecordid>eNpFkE9LxDAUxIMouKx78RMEj0I1_5ueZFldV1nwUr2GNH1lK22zJOnBb29kRefy5jBv-DEIXVNyRwmv7h9JvSFMyer1DC0YkaQoJRfnf56pS7SK8ZNkaaq0qhbooT5AGD0M4FLoHU7BTvHoQ8K-wxHG3vmpnV3yAXfzMBQ7mOMAAX9sATO8Hq7QRWeHCKvfu0Tv26d6syv2b88vm_W-cBlNFwIsrxpLNCOlEGWpy04r51jDrCw140o3VGSjbeOEBCtl2-YXxWXTAq0oX6KbU6-PqTfR9QncIbNNmdtQxbVkOoduTyEXfIwBOnMM_WjDl6HE_Exk_ifi38MoVvk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermoelectric transport of semiconductor full-Heusler VFe 2 Al</title><source>Royal Society Of Chemistry Journals</source><creator>Anand, Shashwat ; Gurunathan, Ramya ; Soldi, Thomas ; Borgsmiller, Leah ; Orenstein, Rachel ; Snyder, G. Jeffrey</creator><creatorcontrib>Anand, Shashwat ; Gurunathan, Ramya ; Soldi, Thomas ; Borgsmiller, Leah ; Orenstein, Rachel ; Snyder, G. Jeffrey</creatorcontrib><description>The full-Heusler VFe
2
Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe
2
Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe
2
Al has often been described as a semimetal, here we show the electronic and thermal properties of VFe
2
Al can be explained by considering VFe
2
Al as a valence precise semiconductor like many other thermoelectric materials but with a very small band gap (
E
g
= 0.03 ± 0.01 eV). Using a two-band model for electrical transport and point-defect scattering model for thermal transport we analyze the thermoelectric properties of bulk full-Heusler VFe
2
Al. We demonstrate that a semiconductor transport model can explain the compilation of data from a variety of n and p-type VFe
2
Al compositions assuming a small band-gap between 0.02 eV and 0.04 eV. In this small
E
g
semiconductor understanding, the model suggests that nominally undoped VFe
2
Al samples appear metallic because of intrinsic defects of the order of ∼10
20
defects per cm
−3
. We rationalize the observed trends in weighted mobilities (
μ
w
) with dopant atoms from a molecular orbital understanding of the electronic structure. We use a phonon-point-defect scattering model to understand the dopant-concentration (and, therefore, the carrier-concentration) dependence of thermal conductivity. The electrical and thermal models developed allow us to predict the
zT versus
carrier concentration curve for this material, which maps well to reported experimental investigations.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/D0TC02659J</identifier><language>eng</language><publisher>United Kingdom: Royal Society of Chemistry (RSC)</publisher><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-08, Vol.8 (30), p.10174-10184</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1038-4ea39ba08207447787f86cc2b2a5782368b147828abc45ea55ddea3635bde1913</citedby><cites>FETCH-LOGICAL-c1038-4ea39ba08207447787f86cc2b2a5782368b147828abc45ea55ddea3635bde1913</cites><orcidid>0000-0002-4465-9574 ; 0000-0003-1414-8682 ; 0000-0001-7705-4654 ; 0000-0001-8805-1547 ; 0000000244659574 ; 0000000314148682 ; 0000000177054654 ; 0000000188051547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1638528$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Anand, Shashwat</creatorcontrib><creatorcontrib>Gurunathan, Ramya</creatorcontrib><creatorcontrib>Soldi, Thomas</creatorcontrib><creatorcontrib>Borgsmiller, Leah</creatorcontrib><creatorcontrib>Orenstein, Rachel</creatorcontrib><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><title>Thermoelectric transport of semiconductor full-Heusler VFe 2 Al</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>The full-Heusler VFe
2
Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe
2
Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe
2
Al has often been described as a semimetal, here we show the electronic and thermal properties of VFe
2
Al can be explained by considering VFe
2
Al as a valence precise semiconductor like many other thermoelectric materials but with a very small band gap (
E
g
= 0.03 ± 0.01 eV). Using a two-band model for electrical transport and point-defect scattering model for thermal transport we analyze the thermoelectric properties of bulk full-Heusler VFe
2
Al. We demonstrate that a semiconductor transport model can explain the compilation of data from a variety of n and p-type VFe
2
Al compositions assuming a small band-gap between 0.02 eV and 0.04 eV. In this small
E
g
semiconductor understanding, the model suggests that nominally undoped VFe
2
Al samples appear metallic because of intrinsic defects of the order of ∼10
20
defects per cm
−3
. We rationalize the observed trends in weighted mobilities (
μ
w
) with dopant atoms from a molecular orbital understanding of the electronic structure. We use a phonon-point-defect scattering model to understand the dopant-concentration (and, therefore, the carrier-concentration) dependence of thermal conductivity. The electrical and thermal models developed allow us to predict the
zT versus
carrier concentration curve for this material, which maps well to reported experimental investigations.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LxDAUxIMouKx78RMEj0I1_5ueZFldV1nwUr2GNH1lK22zJOnBb29kRefy5jBv-DEIXVNyRwmv7h9JvSFMyer1DC0YkaQoJRfnf56pS7SK8ZNkaaq0qhbooT5AGD0M4FLoHU7BTvHoQ8K-wxHG3vmpnV3yAXfzMBQ7mOMAAX9sATO8Hq7QRWeHCKvfu0Tv26d6syv2b88vm_W-cBlNFwIsrxpLNCOlEGWpy04r51jDrCw140o3VGSjbeOEBCtl2-YXxWXTAq0oX6KbU6-PqTfR9QncIbNNmdtQxbVkOoduTyEXfIwBOnMM_WjDl6HE_Exk_ifi38MoVvk</recordid><startdate>20200806</startdate><enddate>20200806</enddate><creator>Anand, Shashwat</creator><creator>Gurunathan, Ramya</creator><creator>Soldi, Thomas</creator><creator>Borgsmiller, Leah</creator><creator>Orenstein, Rachel</creator><creator>Snyder, G. Jeffrey</creator><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4465-9574</orcidid><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0001-7705-4654</orcidid><orcidid>https://orcid.org/0000-0001-8805-1547</orcidid><orcidid>https://orcid.org/0000000244659574</orcidid><orcidid>https://orcid.org/0000000314148682</orcidid><orcidid>https://orcid.org/0000000177054654</orcidid><orcidid>https://orcid.org/0000000188051547</orcidid></search><sort><creationdate>20200806</creationdate><title>Thermoelectric transport of semiconductor full-Heusler VFe 2 Al</title><author>Anand, Shashwat ; Gurunathan, Ramya ; Soldi, Thomas ; Borgsmiller, Leah ; Orenstein, Rachel ; Snyder, G. Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1038-4ea39ba08207447787f86cc2b2a5782368b147828abc45ea55ddea3635bde1913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anand, Shashwat</creatorcontrib><creatorcontrib>Gurunathan, Ramya</creatorcontrib><creatorcontrib>Soldi, Thomas</creatorcontrib><creatorcontrib>Borgsmiller, Leah</creatorcontrib><creatorcontrib>Orenstein, Rachel</creatorcontrib><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anand, Shashwat</au><au>Gurunathan, Ramya</au><au>Soldi, Thomas</au><au>Borgsmiller, Leah</au><au>Orenstein, Rachel</au><au>Snyder, G. Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric transport of semiconductor full-Heusler VFe 2 Al</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-08-06</date><risdate>2020</risdate><volume>8</volume><issue>30</issue><spage>10174</spage><epage>10184</epage><pages>10174-10184</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>The full-Heusler VFe
2
Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe
2
Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe
2
Al has often been described as a semimetal, here we show the electronic and thermal properties of VFe
2
Al can be explained by considering VFe
2
Al as a valence precise semiconductor like many other thermoelectric materials but with a very small band gap (
E
g
= 0.03 ± 0.01 eV). Using a two-band model for electrical transport and point-defect scattering model for thermal transport we analyze the thermoelectric properties of bulk full-Heusler VFe
2
Al. We demonstrate that a semiconductor transport model can explain the compilation of data from a variety of n and p-type VFe
2
Al compositions assuming a small band-gap between 0.02 eV and 0.04 eV. In this small
E
g
semiconductor understanding, the model suggests that nominally undoped VFe
2
Al samples appear metallic because of intrinsic defects of the order of ∼10
20
defects per cm
−3
. We rationalize the observed trends in weighted mobilities (
μ
w
) with dopant atoms from a molecular orbital understanding of the electronic structure. We use a phonon-point-defect scattering model to understand the dopant-concentration (and, therefore, the carrier-concentration) dependence of thermal conductivity. The electrical and thermal models developed allow us to predict the
zT versus
carrier concentration curve for this material, which maps well to reported experimental investigations.</abstract><cop>United Kingdom</cop><pub>Royal Society of Chemistry (RSC)</pub><doi>10.1039/D0TC02659J</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4465-9574</orcidid><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0001-7705-4654</orcidid><orcidid>https://orcid.org/0000-0001-8805-1547</orcidid><orcidid>https://orcid.org/0000000244659574</orcidid><orcidid>https://orcid.org/0000000314148682</orcidid><orcidid>https://orcid.org/0000000177054654</orcidid><orcidid>https://orcid.org/0000000188051547</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-08, Vol.8 (30), p.10174-10184 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_osti_scitechconnect_1638528 |
source | Royal Society Of Chemistry Journals |
title | Thermoelectric transport of semiconductor full-Heusler VFe 2 Al |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20transport%20of%20semiconductor%20full-Heusler%20VFe%202%20Al&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Anand,%20Shashwat&rft.date=2020-08-06&rft.volume=8&rft.issue=30&rft.spage=10174&rft.epage=10184&rft.pages=10174-10184&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/D0TC02659J&rft_dat=%3Ccrossref_osti_%3E10_1039_D0TC02659J%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |