Thermoelectric transport of semiconductor full-Heusler VFe 2 Al

The full-Heusler VFe 2 Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe 2 Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe 2 Al has often been described as a semim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-08, Vol.8 (30), p.10174-10184
Hauptverfasser: Anand, Shashwat, Gurunathan, Ramya, Soldi, Thomas, Borgsmiller, Leah, Orenstein, Rachel, Snyder, G. Jeffrey
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10184
container_issue 30
container_start_page 10174
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 8
creator Anand, Shashwat
Gurunathan, Ramya
Soldi, Thomas
Borgsmiller, Leah
Orenstein, Rachel
Snyder, G. Jeffrey
description The full-Heusler VFe 2 Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe 2 Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe 2 Al has often been described as a semimetal, here we show the electronic and thermal properties of VFe 2 Al can be explained by considering VFe 2 Al as a valence precise semiconductor like many other thermoelectric materials but with a very small band gap ( E g = 0.03 ± 0.01 eV). Using a two-band model for electrical transport and point-defect scattering model for thermal transport we analyze the thermoelectric properties of bulk full-Heusler VFe 2 Al. We demonstrate that a semiconductor transport model can explain the compilation of data from a variety of n and p-type VFe 2 Al compositions assuming a small band-gap between 0.02 eV and 0.04 eV. In this small E g semiconductor understanding, the model suggests that nominally undoped VFe 2 Al samples appear metallic because of intrinsic defects of the order of ∼10 20 defects per cm −3 . We rationalize the observed trends in weighted mobilities ( μ w ) with dopant atoms from a molecular orbital understanding of the electronic structure. We use a phonon-point-defect scattering model to understand the dopant-concentration (and, therefore, the carrier-concentration) dependence of thermal conductivity. The electrical and thermal models developed allow us to predict the zT versus carrier concentration curve for this material, which maps well to reported experimental investigations.
doi_str_mv 10.1039/D0TC02659J
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1638528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_D0TC02659J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1038-4ea39ba08207447787f86cc2b2a5782368b147828abc45ea55ddea3635bde1913</originalsourceid><addsrcrecordid>eNpFkE9LxDAUxIMouKx78RMEj0I1_5ueZFldV1nwUr2GNH1lK22zJOnBb29kRefy5jBv-DEIXVNyRwmv7h9JvSFMyer1DC0YkaQoJRfnf56pS7SK8ZNkaaq0qhbooT5AGD0M4FLoHU7BTvHoQ8K-wxHG3vmpnV3yAXfzMBQ7mOMAAX9sATO8Hq7QRWeHCKvfu0Tv26d6syv2b88vm_W-cBlNFwIsrxpLNCOlEGWpy04r51jDrCw140o3VGSjbeOEBCtl2-YXxWXTAq0oX6KbU6-PqTfR9QncIbNNmdtQxbVkOoduTyEXfIwBOnMM_WjDl6HE_Exk_ifi38MoVvk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermoelectric transport of semiconductor full-Heusler VFe 2 Al</title><source>Royal Society Of Chemistry Journals</source><creator>Anand, Shashwat ; Gurunathan, Ramya ; Soldi, Thomas ; Borgsmiller, Leah ; Orenstein, Rachel ; Snyder, G. Jeffrey</creator><creatorcontrib>Anand, Shashwat ; Gurunathan, Ramya ; Soldi, Thomas ; Borgsmiller, Leah ; Orenstein, Rachel ; Snyder, G. Jeffrey</creatorcontrib><description>The full-Heusler VFe 2 Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe 2 Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe 2 Al has often been described as a semimetal, here we show the electronic and thermal properties of VFe 2 Al can be explained by considering VFe 2 Al as a valence precise semiconductor like many other thermoelectric materials but with a very small band gap ( E g = 0.03 ± 0.01 eV). Using a two-band model for electrical transport and point-defect scattering model for thermal transport we analyze the thermoelectric properties of bulk full-Heusler VFe 2 Al. We demonstrate that a semiconductor transport model can explain the compilation of data from a variety of n and p-type VFe 2 Al compositions assuming a small band-gap between 0.02 eV and 0.04 eV. In this small E g semiconductor understanding, the model suggests that nominally undoped VFe 2 Al samples appear metallic because of intrinsic defects of the order of ∼10 20 defects per cm −3 . We rationalize the observed trends in weighted mobilities ( μ w ) with dopant atoms from a molecular orbital understanding of the electronic structure. We use a phonon-point-defect scattering model to understand the dopant-concentration (and, therefore, the carrier-concentration) dependence of thermal conductivity. The electrical and thermal models developed allow us to predict the zT versus carrier concentration curve for this material, which maps well to reported experimental investigations.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/D0TC02659J</identifier><language>eng</language><publisher>United Kingdom: Royal Society of Chemistry (RSC)</publisher><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-08, Vol.8 (30), p.10174-10184</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1038-4ea39ba08207447787f86cc2b2a5782368b147828abc45ea55ddea3635bde1913</citedby><cites>FETCH-LOGICAL-c1038-4ea39ba08207447787f86cc2b2a5782368b147828abc45ea55ddea3635bde1913</cites><orcidid>0000-0002-4465-9574 ; 0000-0003-1414-8682 ; 0000-0001-7705-4654 ; 0000-0001-8805-1547 ; 0000000244659574 ; 0000000314148682 ; 0000000177054654 ; 0000000188051547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1638528$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Anand, Shashwat</creatorcontrib><creatorcontrib>Gurunathan, Ramya</creatorcontrib><creatorcontrib>Soldi, Thomas</creatorcontrib><creatorcontrib>Borgsmiller, Leah</creatorcontrib><creatorcontrib>Orenstein, Rachel</creatorcontrib><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><title>Thermoelectric transport of semiconductor full-Heusler VFe 2 Al</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>The full-Heusler VFe 2 Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe 2 Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe 2 Al has often been described as a semimetal, here we show the electronic and thermal properties of VFe 2 Al can be explained by considering VFe 2 Al as a valence precise semiconductor like many other thermoelectric materials but with a very small band gap ( E g = 0.03 ± 0.01 eV). Using a two-band model for electrical transport and point-defect scattering model for thermal transport we analyze the thermoelectric properties of bulk full-Heusler VFe 2 Al. We demonstrate that a semiconductor transport model can explain the compilation of data from a variety of n and p-type VFe 2 Al compositions assuming a small band-gap between 0.02 eV and 0.04 eV. In this small E g semiconductor understanding, the model suggests that nominally undoped VFe 2 Al samples appear metallic because of intrinsic defects of the order of ∼10 20 defects per cm −3 . We rationalize the observed trends in weighted mobilities ( μ w ) with dopant atoms from a molecular orbital understanding of the electronic structure. We use a phonon-point-defect scattering model to understand the dopant-concentration (and, therefore, the carrier-concentration) dependence of thermal conductivity. The electrical and thermal models developed allow us to predict the zT versus carrier concentration curve for this material, which maps well to reported experimental investigations.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LxDAUxIMouKx78RMEj0I1_5ueZFldV1nwUr2GNH1lK22zJOnBb29kRefy5jBv-DEIXVNyRwmv7h9JvSFMyer1DC0YkaQoJRfnf56pS7SK8ZNkaaq0qhbooT5AGD0M4FLoHU7BTvHoQ8K-wxHG3vmpnV3yAXfzMBQ7mOMAAX9sATO8Hq7QRWeHCKvfu0Tv26d6syv2b88vm_W-cBlNFwIsrxpLNCOlEGWpy04r51jDrCw140o3VGSjbeOEBCtl2-YXxWXTAq0oX6KbU6-PqTfR9QncIbNNmdtQxbVkOoduTyEXfIwBOnMM_WjDl6HE_Exk_ifi38MoVvk</recordid><startdate>20200806</startdate><enddate>20200806</enddate><creator>Anand, Shashwat</creator><creator>Gurunathan, Ramya</creator><creator>Soldi, Thomas</creator><creator>Borgsmiller, Leah</creator><creator>Orenstein, Rachel</creator><creator>Snyder, G. Jeffrey</creator><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4465-9574</orcidid><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0001-7705-4654</orcidid><orcidid>https://orcid.org/0000-0001-8805-1547</orcidid><orcidid>https://orcid.org/0000000244659574</orcidid><orcidid>https://orcid.org/0000000314148682</orcidid><orcidid>https://orcid.org/0000000177054654</orcidid><orcidid>https://orcid.org/0000000188051547</orcidid></search><sort><creationdate>20200806</creationdate><title>Thermoelectric transport of semiconductor full-Heusler VFe 2 Al</title><author>Anand, Shashwat ; Gurunathan, Ramya ; Soldi, Thomas ; Borgsmiller, Leah ; Orenstein, Rachel ; Snyder, G. Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1038-4ea39ba08207447787f86cc2b2a5782368b147828abc45ea55ddea3635bde1913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anand, Shashwat</creatorcontrib><creatorcontrib>Gurunathan, Ramya</creatorcontrib><creatorcontrib>Soldi, Thomas</creatorcontrib><creatorcontrib>Borgsmiller, Leah</creatorcontrib><creatorcontrib>Orenstein, Rachel</creatorcontrib><creatorcontrib>Snyder, G. Jeffrey</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anand, Shashwat</au><au>Gurunathan, Ramya</au><au>Soldi, Thomas</au><au>Borgsmiller, Leah</au><au>Orenstein, Rachel</au><au>Snyder, G. Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric transport of semiconductor full-Heusler VFe 2 Al</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2020-08-06</date><risdate>2020</risdate><volume>8</volume><issue>30</issue><spage>10174</spage><epage>10184</epage><pages>10174-10184</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>The full-Heusler VFe 2 Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe 2 Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe 2 Al has often been described as a semimetal, here we show the electronic and thermal properties of VFe 2 Al can be explained by considering VFe 2 Al as a valence precise semiconductor like many other thermoelectric materials but with a very small band gap ( E g = 0.03 ± 0.01 eV). Using a two-band model for electrical transport and point-defect scattering model for thermal transport we analyze the thermoelectric properties of bulk full-Heusler VFe 2 Al. We demonstrate that a semiconductor transport model can explain the compilation of data from a variety of n and p-type VFe 2 Al compositions assuming a small band-gap between 0.02 eV and 0.04 eV. In this small E g semiconductor understanding, the model suggests that nominally undoped VFe 2 Al samples appear metallic because of intrinsic defects of the order of ∼10 20 defects per cm −3 . We rationalize the observed trends in weighted mobilities ( μ w ) with dopant atoms from a molecular orbital understanding of the electronic structure. We use a phonon-point-defect scattering model to understand the dopant-concentration (and, therefore, the carrier-concentration) dependence of thermal conductivity. The electrical and thermal models developed allow us to predict the zT versus carrier concentration curve for this material, which maps well to reported experimental investigations.</abstract><cop>United Kingdom</cop><pub>Royal Society of Chemistry (RSC)</pub><doi>10.1039/D0TC02659J</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4465-9574</orcidid><orcidid>https://orcid.org/0000-0003-1414-8682</orcidid><orcidid>https://orcid.org/0000-0001-7705-4654</orcidid><orcidid>https://orcid.org/0000-0001-8805-1547</orcidid><orcidid>https://orcid.org/0000000244659574</orcidid><orcidid>https://orcid.org/0000000314148682</orcidid><orcidid>https://orcid.org/0000000177054654</orcidid><orcidid>https://orcid.org/0000000188051547</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2020-08, Vol.8 (30), p.10174-10184
issn 2050-7526
2050-7534
language eng
recordid cdi_osti_scitechconnect_1638528
source Royal Society Of Chemistry Journals
title Thermoelectric transport of semiconductor full-Heusler VFe 2 Al
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20transport%20of%20semiconductor%20full-Heusler%20VFe%202%20Al&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Anand,%20Shashwat&rft.date=2020-08-06&rft.volume=8&rft.issue=30&rft.spage=10174&rft.epage=10184&rft.pages=10174-10184&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/D0TC02659J&rft_dat=%3Ccrossref_osti_%3E10_1039_D0TC02659J%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true