Close-spaced vapor transport reactor for III-V growth using HCl as the transport agent
•HCl transports GaAs in a new close-spaced vapor transport reactor.•Both n-type and p-type doping using Si and Zn, respectively, is possible.•Hall mobilities of 3400 cm2 V−1 s−1 for n-GaAs and 110 cm2 V−1 s−1 for p-GaAs. Low-cost methods of III-V deposition are an important component of making high-...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2019-01, Vol.506 (C), p.147-155 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | C |
container_start_page | 147 |
container_title | Journal of crystal growth |
container_volume | 506 |
creator | Funch, Christopher J. Greenaway, Ann L. Boucher, Jason W. Weiss, Robert Welsh, Alex Aloni, Shaul Boettcher, Shannon W. |
description | •HCl transports GaAs in a new close-spaced vapor transport reactor.•Both n-type and p-type doping using Si and Zn, respectively, is possible.•Hall mobilities of 3400 cm2 V−1 s−1 for n-GaAs and 110 cm2 V−1 s−1 for p-GaAs.
Low-cost methods of III-V deposition are an important component of making high-efficiency III-V solar cells cost-competitive for terrestrial applications. Here, we report the design and testing of a close-spaced vapor transport system for the growth of epitaxial GaAs films using solid precursors and HCl as the transport agent. Previous work on a related system demonstrated growth of high-quality GaAs using H2O as the transport agent, but the use of H2O generates oxide-related defects and limits material compatibility. The new design also enables independent handling of source and substrate material. The effect of process conditions on growth rate, surface morphology, and substrate-orientation-dependent growth is discussed. We demonstrate successful doping of Si and Zn with average transport efficiencies of approximately 30% and 20%, respectively, based on secondary-ion-mass-spectrometry data. Room-temperature hall mobilities approached those achieved for GaAs grown by metal-organic vapor phase epitaxy and water-based close-spaced vapor transport, 2210–3400 cm2 V−1 s−1 for n-GaAs and 70–110 cm2 V−1 s−1 for p-GaAs depending on dopant concentration. Initial results on doping and cross-contamination suggest this system should be capable of homoepitaxial growth of p-n junctions. |
doi_str_mv | 10.1016/j.jcrysgro.2018.10.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1635905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024818305232</els_id><sourcerecordid>2181750460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3301-65b435d4b181d8b13b3f6f6d6d13d1e1705098385dee2e76fe6a213130a37a4a3</originalsourceid><addsrcrecordid>eNqFUMFOwzAMjRBIjMEvoArOHXbTpt0NVAGrhMQFdo2y1N1ajaYk2dD-nlQDiRuHONbTe_bzY-waYYaA4q6bddoe3NqaWQJYBHAGHE_YBIucxxlAcsomoSYxJGlxzi6c6wCCEmHCluXWOIrdoDTV0V4Nxkbeqt6FxkeWlPYBacKrqipeRmHLl99EO9f262hRbiPlIr-hPxq1pt5fsrNGbR1d_fxT9v70-FYu4pfX56p8eIk154CxyFYpz-p0hQXWxQr5ijeiEbWokddImEMG84IXWU2UUC4aEipBjhwUz1Wq-JTdHOca51vpdOtJb7Tpe9JeouDZHLJAuj2SBms-d-S87MzO9sGXTMLiPINUQGCJI0tb45ylRg62_VD2IBHkGLTs5G_Qcgx6xEPQQXh_FFI4dN-SHX1QH_Js7WijNu1_I74BUlOI2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2181750460</pqid></control><display><type>article</type><title>Close-spaced vapor transport reactor for III-V growth using HCl as the transport agent</title><source>Elsevier ScienceDirect Journals</source><creator>Funch, Christopher J. ; Greenaway, Ann L. ; Boucher, Jason W. ; Weiss, Robert ; Welsh, Alex ; Aloni, Shaul ; Boettcher, Shannon W.</creator><creatorcontrib>Funch, Christopher J. ; Greenaway, Ann L. ; Boucher, Jason W. ; Weiss, Robert ; Welsh, Alex ; Aloni, Shaul ; Boettcher, Shannon W.</creatorcontrib><description>•HCl transports GaAs in a new close-spaced vapor transport reactor.•Both n-type and p-type doping using Si and Zn, respectively, is possible.•Hall mobilities of 3400 cm2 V−1 s−1 for n-GaAs and 110 cm2 V−1 s−1 for p-GaAs.
Low-cost methods of III-V deposition are an important component of making high-efficiency III-V solar cells cost-competitive for terrestrial applications. Here, we report the design and testing of a close-spaced vapor transport system for the growth of epitaxial GaAs films using solid precursors and HCl as the transport agent. Previous work on a related system demonstrated growth of high-quality GaAs using H2O as the transport agent, but the use of H2O generates oxide-related defects and limits material compatibility. The new design also enables independent handling of source and substrate material. The effect of process conditions on growth rate, surface morphology, and substrate-orientation-dependent growth is discussed. We demonstrate successful doping of Si and Zn with average transport efficiencies of approximately 30% and 20%, respectively, based on secondary-ion-mass-spectrometry data. Room-temperature hall mobilities approached those achieved for GaAs grown by metal-organic vapor phase epitaxy and water-based close-spaced vapor transport, 2210–3400 cm2 V−1 s−1 for n-GaAs and 70–110 cm2 V−1 s−1 for p-GaAs depending on dopant concentration. Initial results on doping and cross-contamination suggest this system should be capable of homoepitaxial growth of p-n junctions.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2018.10.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Reactor design, doping, characterization ; A3. Chloride vapor phase epitaxy, close-spaced vapor transport ; B2. Gallium arsenide ; Design defects ; Doping ; Epitaxial growth ; Materials handling ; Metalorganic chemical vapor deposition ; Morphology ; P-n junctions ; Photovoltaic cells ; Solar cells ; Substrates ; Transport ; Vapor phase epitaxy</subject><ispartof>Journal of crystal growth, 2019-01, Vol.506 (C), p.147-155</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3301-65b435d4b181d8b13b3f6f6d6d13d1e1705098385dee2e76fe6a213130a37a4a3</citedby><cites>FETCH-LOGICAL-c3301-65b435d4b181d8b13b3f6f6d6d13d1e1705098385dee2e76fe6a213130a37a4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2018.10.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1635905$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Funch, Christopher J.</creatorcontrib><creatorcontrib>Greenaway, Ann L.</creatorcontrib><creatorcontrib>Boucher, Jason W.</creatorcontrib><creatorcontrib>Weiss, Robert</creatorcontrib><creatorcontrib>Welsh, Alex</creatorcontrib><creatorcontrib>Aloni, Shaul</creatorcontrib><creatorcontrib>Boettcher, Shannon W.</creatorcontrib><title>Close-spaced vapor transport reactor for III-V growth using HCl as the transport agent</title><title>Journal of crystal growth</title><description>•HCl transports GaAs in a new close-spaced vapor transport reactor.•Both n-type and p-type doping using Si and Zn, respectively, is possible.•Hall mobilities of 3400 cm2 V−1 s−1 for n-GaAs and 110 cm2 V−1 s−1 for p-GaAs.
Low-cost methods of III-V deposition are an important component of making high-efficiency III-V solar cells cost-competitive for terrestrial applications. Here, we report the design and testing of a close-spaced vapor transport system for the growth of epitaxial GaAs films using solid precursors and HCl as the transport agent. Previous work on a related system demonstrated growth of high-quality GaAs using H2O as the transport agent, but the use of H2O generates oxide-related defects and limits material compatibility. The new design also enables independent handling of source and substrate material. The effect of process conditions on growth rate, surface morphology, and substrate-orientation-dependent growth is discussed. We demonstrate successful doping of Si and Zn with average transport efficiencies of approximately 30% and 20%, respectively, based on secondary-ion-mass-spectrometry data. Room-temperature hall mobilities approached those achieved for GaAs grown by metal-organic vapor phase epitaxy and water-based close-spaced vapor transport, 2210–3400 cm2 V−1 s−1 for n-GaAs and 70–110 cm2 V−1 s−1 for p-GaAs depending on dopant concentration. Initial results on doping and cross-contamination suggest this system should be capable of homoepitaxial growth of p-n junctions.</description><subject>A1. Reactor design, doping, characterization</subject><subject>A3. Chloride vapor phase epitaxy, close-spaced vapor transport</subject><subject>B2. Gallium arsenide</subject><subject>Design defects</subject><subject>Doping</subject><subject>Epitaxial growth</subject><subject>Materials handling</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Morphology</subject><subject>P-n junctions</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Substrates</subject><subject>Transport</subject><subject>Vapor phase epitaxy</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMFOwzAMjRBIjMEvoArOHXbTpt0NVAGrhMQFdo2y1N1ajaYk2dD-nlQDiRuHONbTe_bzY-waYYaA4q6bddoe3NqaWQJYBHAGHE_YBIucxxlAcsomoSYxJGlxzi6c6wCCEmHCluXWOIrdoDTV0V4Nxkbeqt6FxkeWlPYBacKrqipeRmHLl99EO9f262hRbiPlIr-hPxq1pt5fsrNGbR1d_fxT9v70-FYu4pfX56p8eIk154CxyFYpz-p0hQXWxQr5ijeiEbWokddImEMG84IXWU2UUC4aEipBjhwUz1Wq-JTdHOca51vpdOtJb7Tpe9JeouDZHLJAuj2SBms-d-S87MzO9sGXTMLiPINUQGCJI0tb45ylRg62_VD2IBHkGLTs5G_Qcgx6xEPQQXh_FFI4dN-SHX1QH_Js7WijNu1_I74BUlOI2w</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Funch, Christopher J.</creator><creator>Greenaway, Ann L.</creator><creator>Boucher, Jason W.</creator><creator>Weiss, Robert</creator><creator>Welsh, Alex</creator><creator>Aloni, Shaul</creator><creator>Boettcher, Shannon W.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20190115</creationdate><title>Close-spaced vapor transport reactor for III-V growth using HCl as the transport agent</title><author>Funch, Christopher J. ; Greenaway, Ann L. ; Boucher, Jason W. ; Weiss, Robert ; Welsh, Alex ; Aloni, Shaul ; Boettcher, Shannon W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3301-65b435d4b181d8b13b3f6f6d6d13d1e1705098385dee2e76fe6a213130a37a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A1. Reactor design, doping, characterization</topic><topic>A3. Chloride vapor phase epitaxy, close-spaced vapor transport</topic><topic>B2. Gallium arsenide</topic><topic>Design defects</topic><topic>Doping</topic><topic>Epitaxial growth</topic><topic>Materials handling</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Morphology</topic><topic>P-n junctions</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Substrates</topic><topic>Transport</topic><topic>Vapor phase epitaxy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Funch, Christopher J.</creatorcontrib><creatorcontrib>Greenaway, Ann L.</creatorcontrib><creatorcontrib>Boucher, Jason W.</creatorcontrib><creatorcontrib>Weiss, Robert</creatorcontrib><creatorcontrib>Welsh, Alex</creatorcontrib><creatorcontrib>Aloni, Shaul</creatorcontrib><creatorcontrib>Boettcher, Shannon W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Funch, Christopher J.</au><au>Greenaway, Ann L.</au><au>Boucher, Jason W.</au><au>Weiss, Robert</au><au>Welsh, Alex</au><au>Aloni, Shaul</au><au>Boettcher, Shannon W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Close-spaced vapor transport reactor for III-V growth using HCl as the transport agent</atitle><jtitle>Journal of crystal growth</jtitle><date>2019-01-15</date><risdate>2019</risdate><volume>506</volume><issue>C</issue><spage>147</spage><epage>155</epage><pages>147-155</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•HCl transports GaAs in a new close-spaced vapor transport reactor.•Both n-type and p-type doping using Si and Zn, respectively, is possible.•Hall mobilities of 3400 cm2 V−1 s−1 for n-GaAs and 110 cm2 V−1 s−1 for p-GaAs.
Low-cost methods of III-V deposition are an important component of making high-efficiency III-V solar cells cost-competitive for terrestrial applications. Here, we report the design and testing of a close-spaced vapor transport system for the growth of epitaxial GaAs films using solid precursors and HCl as the transport agent. Previous work on a related system demonstrated growth of high-quality GaAs using H2O as the transport agent, but the use of H2O generates oxide-related defects and limits material compatibility. The new design also enables independent handling of source and substrate material. The effect of process conditions on growth rate, surface morphology, and substrate-orientation-dependent growth is discussed. We demonstrate successful doping of Si and Zn with average transport efficiencies of approximately 30% and 20%, respectively, based on secondary-ion-mass-spectrometry data. Room-temperature hall mobilities approached those achieved for GaAs grown by metal-organic vapor phase epitaxy and water-based close-spaced vapor transport, 2210–3400 cm2 V−1 s−1 for n-GaAs and 70–110 cm2 V−1 s−1 for p-GaAs depending on dopant concentration. Initial results on doping and cross-contamination suggest this system should be capable of homoepitaxial growth of p-n junctions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2018.10.031</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2019-01, Vol.506 (C), p.147-155 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1635905 |
source | Elsevier ScienceDirect Journals |
subjects | A1. Reactor design, doping, characterization A3. Chloride vapor phase epitaxy, close-spaced vapor transport B2. Gallium arsenide Design defects Doping Epitaxial growth Materials handling Metalorganic chemical vapor deposition Morphology P-n junctions Photovoltaic cells Solar cells Substrates Transport Vapor phase epitaxy |
title | Close-spaced vapor transport reactor for III-V growth using HCl as the transport agent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Close-spaced%20vapor%20transport%20reactor%20for%20III-V%20growth%20using%20HCl%20as%20the%20transport%20agent&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Funch,%20Christopher%20J.&rft.date=2019-01-15&rft.volume=506&rft.issue=C&rft.spage=147&rft.epage=155&rft.pages=147-155&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2018.10.031&rft_dat=%3Cproquest_osti_%3E2181750460%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2181750460&rft_id=info:pmid/&rft_els_id=S0022024818305232&rfr_iscdi=true |