Quantum simulations of materials on near-term quantum computers

Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials 2020-07, Vol.6 (1), Article 85
Hauptverfasser: Ma, He, Govoni, Marco, Galli, Giulia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj computational materials
container_volume 6
creator Ma, He
Govoni, Marco
Galli, Giulia
description Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of larger systems, it is desirable to develop hybrid quantum-classical methods where the quantum computation is restricted to a small portion of the system. This is of particular relevance for molecules and solids where an active region requires a higher level of theoretical accuracy than its environment. Here, we present a quantum embedding theory for the calculation of strongly-correlated electronic states of active regions, with the rest of the system described within density functional theory. We demonstrate the accuracy and effectiveness of the approach by investigating several defect quantum bits in semiconductors that are of great interest for quantum information technologies. We perform calculations on quantum computers and show that they yield results in agreement with those obtained with exact diagonalization on classical architectures, paving the way to simulations of realistic materials on near-term quantum computers.
doi_str_mv 10.1038/s41524-020-00353-z
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1635726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419546988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-23cbc079e00af25b97c8cd9df9d0d8fa3db32bb335aae0d92493ee7e7538bc1c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIz-AVdF19GbV5OsRAZfMCCCrkOaptph2swk7cL59WbsgK5c3Xsu3zlcDkIXBK4JMHWTOBGUY6CAAZhgeHeEZhSExEyXcPxnP0XnKa0AgGiqKIcZun0dbT-MXZHablzboQ19KkJTdHbwsbXrLPqi9zbirLtie6Bd6DZjvqQzdNJkyp8f5hy9P9y_LZ7w8uXxeXG3xI4rPmDKXOVAag9gGyoqLZ1yta4bXUOtGsvqitGqYkxY66HWlGvmvfRSMFU54tgcXU65IQ2tSa4dvPt0oe-9GwwpmZC0zNDVBG1i2I4-DWYVxtjnvwzlSklZEqb-p4gWvNRqT9GJcjGkFH1jNrHtbPwyBMy-djPVbnLt5qd2s8smNplShvsPH3-j_3F9A1NphTo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419546988</pqid></control><display><type>article</type><title>Quantum simulations of materials on near-term quantum computers</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ma, He ; Govoni, Marco ; Galli, Giulia</creator><creatorcontrib>Ma, He ; Govoni, Marco ; Galli, Giulia ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of larger systems, it is desirable to develop hybrid quantum-classical methods where the quantum computation is restricted to a small portion of the system. This is of particular relevance for molecules and solids where an active region requires a higher level of theoretical accuracy than its environment. Here, we present a quantum embedding theory for the calculation of strongly-correlated electronic states of active regions, with the rest of the system described within density functional theory. We demonstrate the accuracy and effectiveness of the approach by investigating several defect quantum bits in semiconductors that are of great interest for quantum information technologies. We perform calculations on quantum computers and show that they yield results in agreement with those obtained with exact diagonalization on classical architectures, paving the way to simulations of realistic materials on near-term quantum computers.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-020-00353-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034 ; 639/638/563 ; 639/766/119 ; Atomic properties ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Computer simulation ; Computers ; Density functional theory ; Electron states ; Embedding ; Materials Science ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; MATHEMATICS AND COMPUTING ; Quantum computers ; Quantum computing ; Quantum phenomena ; Qubits (quantum computing) ; Simulation ; Theoretical</subject><ispartof>npj computational materials, 2020-07, Vol.6 (1), Article 85</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-23cbc079e00af25b97c8cd9df9d0d8fa3db32bb335aae0d92493ee7e7538bc1c3</citedby><cites>FETCH-LOGICAL-c484t-23cbc079e00af25b97c8cd9df9d0d8fa3db32bb335aae0d92493ee7e7538bc1c3</cites><orcidid>0000-0002-8001-5290 ; 0000-0001-6303-2403 ; 0000000163032403 ; 0000000280015290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-020-00353-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-020-00353-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27924,27925,41120,42189,51576</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1635726$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, He</creatorcontrib><creatorcontrib>Govoni, Marco</creatorcontrib><creatorcontrib>Galli, Giulia</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Quantum simulations of materials on near-term quantum computers</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of larger systems, it is desirable to develop hybrid quantum-classical methods where the quantum computation is restricted to a small portion of the system. This is of particular relevance for molecules and solids where an active region requires a higher level of theoretical accuracy than its environment. Here, we present a quantum embedding theory for the calculation of strongly-correlated electronic states of active regions, with the rest of the system described within density functional theory. We demonstrate the accuracy and effectiveness of the approach by investigating several defect quantum bits in semiconductors that are of great interest for quantum information technologies. We perform calculations on quantum computers and show that they yield results in agreement with those obtained with exact diagonalization on classical architectures, paving the way to simulations of realistic materials on near-term quantum computers.</description><subject>639/301/1034</subject><subject>639/638/563</subject><subject>639/766/119</subject><subject>Atomic properties</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Computer simulation</subject><subject>Computers</subject><subject>Density functional theory</subject><subject>Electron states</subject><subject>Embedding</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOIz-AVdF19GbV5OsRAZfMCCCrkOaptph2swk7cL59WbsgK5c3Xsu3zlcDkIXBK4JMHWTOBGUY6CAAZhgeHeEZhSExEyXcPxnP0XnKa0AgGiqKIcZun0dbT-MXZHablzboQ19KkJTdHbwsbXrLPqi9zbirLtie6Bd6DZjvqQzdNJkyp8f5hy9P9y_LZ7w8uXxeXG3xI4rPmDKXOVAag9gGyoqLZ1yta4bXUOtGsvqitGqYkxY66HWlGvmvfRSMFU54tgcXU65IQ2tSa4dvPt0oe-9GwwpmZC0zNDVBG1i2I4-DWYVxtjnvwzlSklZEqb-p4gWvNRqT9GJcjGkFH1jNrHtbPwyBMy-djPVbnLt5qd2s8smNplShvsPH3-j_3F9A1NphTo</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Ma, He</creator><creator>Govoni, Marco</creator><creator>Galli, Giulia</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8001-5290</orcidid><orcidid>https://orcid.org/0000-0001-6303-2403</orcidid><orcidid>https://orcid.org/0000000163032403</orcidid><orcidid>https://orcid.org/0000000280015290</orcidid></search><sort><creationdate>20200702</creationdate><title>Quantum simulations of materials on near-term quantum computers</title><author>Ma, He ; Govoni, Marco ; Galli, Giulia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-23cbc079e00af25b97c8cd9df9d0d8fa3db32bb335aae0d92493ee7e7538bc1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1034</topic><topic>639/638/563</topic><topic>639/766/119</topic><topic>Atomic properties</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Computer simulation</topic><topic>Computers</topic><topic>Density functional theory</topic><topic>Electron states</topic><topic>Embedding</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, He</creatorcontrib><creatorcontrib>Govoni, Marco</creatorcontrib><creatorcontrib>Galli, Giulia</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, He</au><au>Govoni, Marco</au><au>Galli, Giulia</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum simulations of materials on near-term quantum computers</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2020-07-02</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>85</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of larger systems, it is desirable to develop hybrid quantum-classical methods where the quantum computation is restricted to a small portion of the system. This is of particular relevance for molecules and solids where an active region requires a higher level of theoretical accuracy than its environment. Here, we present a quantum embedding theory for the calculation of strongly-correlated electronic states of active regions, with the rest of the system described within density functional theory. We demonstrate the accuracy and effectiveness of the approach by investigating several defect quantum bits in semiconductors that are of great interest for quantum information technologies. We perform calculations on quantum computers and show that they yield results in agreement with those obtained with exact diagonalization on classical architectures, paving the way to simulations of realistic materials on near-term quantum computers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-020-00353-z</doi><orcidid>https://orcid.org/0000-0002-8001-5290</orcidid><orcidid>https://orcid.org/0000-0001-6303-2403</orcidid><orcidid>https://orcid.org/0000000163032403</orcidid><orcidid>https://orcid.org/0000000280015290</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2020-07, Vol.6 (1), Article 85
issn 2057-3960
2057-3960
language eng
recordid cdi_osti_scitechconnect_1635726
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals
subjects 639/301/1034
639/638/563
639/766/119
Atomic properties
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Computer simulation
Computers
Density functional theory
Electron states
Embedding
Materials Science
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
MATHEMATICS AND COMPUTING
Quantum computers
Quantum computing
Quantum phenomena
Qubits (quantum computing)
Simulation
Theoretical
title Quantum simulations of materials on near-term quantum computers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20simulations%20of%20materials%20on%20near-term%20quantum%20computers&rft.jtitle=npj%20computational%20materials&rft.au=Ma,%20He&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-07-02&rft.volume=6&rft.issue=1&rft.artnum=85&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-020-00353-z&rft_dat=%3Cproquest_osti_%3E2419546988%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419546988&rft_id=info:pmid/&rfr_iscdi=true