Quantum simulations of materials on near-term quantum computers
Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of...
Gespeichert in:
Veröffentlicht in: | npj computational materials 2020-07, Vol.6 (1), Article 85 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | npj computational materials |
container_volume | 6 |
creator | Ma, He Govoni, Marco Galli, Giulia |
description | Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of larger systems, it is desirable to develop hybrid quantum-classical methods where the quantum computation is restricted to a small portion of the system. This is of particular relevance for molecules and solids where an active region requires a higher level of theoretical accuracy than its environment. Here, we present a quantum embedding theory for the calculation of strongly-correlated electronic states of active regions, with the rest of the system described within density functional theory. We demonstrate the accuracy and effectiveness of the approach by investigating several defect quantum bits in semiconductors that are of great interest for quantum information technologies. We perform calculations on quantum computers and show that they yield results in agreement with those obtained with exact diagonalization on classical architectures, paving the way to simulations of realistic materials on near-term quantum computers. |
doi_str_mv | 10.1038/s41524-020-00353-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1635726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419546988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-23cbc079e00af25b97c8cd9df9d0d8fa3db32bb335aae0d92493ee7e7538bc1c3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIz-AVdF19GbV5OsRAZfMCCCrkOaptph2swk7cL59WbsgK5c3Xsu3zlcDkIXBK4JMHWTOBGUY6CAAZhgeHeEZhSExEyXcPxnP0XnKa0AgGiqKIcZun0dbT-MXZHablzboQ19KkJTdHbwsbXrLPqi9zbirLtie6Bd6DZjvqQzdNJkyp8f5hy9P9y_LZ7w8uXxeXG3xI4rPmDKXOVAag9gGyoqLZ1yta4bXUOtGsvqitGqYkxY66HWlGvmvfRSMFU54tgcXU65IQ2tSa4dvPt0oe-9GwwpmZC0zNDVBG1i2I4-DWYVxtjnvwzlSklZEqb-p4gWvNRqT9GJcjGkFH1jNrHtbPwyBMy-djPVbnLt5qd2s8smNplShvsPH3-j_3F9A1NphTo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419546988</pqid></control><display><type>article</type><title>Quantum simulations of materials on near-term quantum computers</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ma, He ; Govoni, Marco ; Galli, Giulia</creator><creatorcontrib>Ma, He ; Govoni, Marco ; Galli, Giulia ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of larger systems, it is desirable to develop hybrid quantum-classical methods where the quantum computation is restricted to a small portion of the system. This is of particular relevance for molecules and solids where an active region requires a higher level of theoretical accuracy than its environment. Here, we present a quantum embedding theory for the calculation of strongly-correlated electronic states of active regions, with the rest of the system described within density functional theory. We demonstrate the accuracy and effectiveness of the approach by investigating several defect quantum bits in semiconductors that are of great interest for quantum information technologies. We perform calculations on quantum computers and show that they yield results in agreement with those obtained with exact diagonalization on classical architectures, paving the way to simulations of realistic materials on near-term quantum computers.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-020-00353-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034 ; 639/638/563 ; 639/766/119 ; Atomic properties ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Computer simulation ; Computers ; Density functional theory ; Electron states ; Embedding ; Materials Science ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; MATHEMATICS AND COMPUTING ; Quantum computers ; Quantum computing ; Quantum phenomena ; Qubits (quantum computing) ; Simulation ; Theoretical</subject><ispartof>npj computational materials, 2020-07, Vol.6 (1), Article 85</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-23cbc079e00af25b97c8cd9df9d0d8fa3db32bb335aae0d92493ee7e7538bc1c3</citedby><cites>FETCH-LOGICAL-c484t-23cbc079e00af25b97c8cd9df9d0d8fa3db32bb335aae0d92493ee7e7538bc1c3</cites><orcidid>0000-0002-8001-5290 ; 0000-0001-6303-2403 ; 0000000163032403 ; 0000000280015290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-020-00353-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-020-00353-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27924,27925,41120,42189,51576</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1635726$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, He</creatorcontrib><creatorcontrib>Govoni, Marco</creatorcontrib><creatorcontrib>Galli, Giulia</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Quantum simulations of materials on near-term quantum computers</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of larger systems, it is desirable to develop hybrid quantum-classical methods where the quantum computation is restricted to a small portion of the system. This is of particular relevance for molecules and solids where an active region requires a higher level of theoretical accuracy than its environment. Here, we present a quantum embedding theory for the calculation of strongly-correlated electronic states of active regions, with the rest of the system described within density functional theory. We demonstrate the accuracy and effectiveness of the approach by investigating several defect quantum bits in semiconductors that are of great interest for quantum information technologies. We perform calculations on quantum computers and show that they yield results in agreement with those obtained with exact diagonalization on classical architectures, paving the way to simulations of realistic materials on near-term quantum computers.</description><subject>639/301/1034</subject><subject>639/638/563</subject><subject>639/766/119</subject><subject>Atomic properties</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Computer simulation</subject><subject>Computers</subject><subject>Density functional theory</subject><subject>Electron states</subject><subject>Embedding</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOIz-AVdF19GbV5OsRAZfMCCCrkOaptph2swk7cL59WbsgK5c3Xsu3zlcDkIXBK4JMHWTOBGUY6CAAZhgeHeEZhSExEyXcPxnP0XnKa0AgGiqKIcZun0dbT-MXZHablzboQ19KkJTdHbwsbXrLPqi9zbirLtie6Bd6DZjvqQzdNJkyp8f5hy9P9y_LZ7w8uXxeXG3xI4rPmDKXOVAag9gGyoqLZ1yta4bXUOtGsvqitGqYkxY66HWlGvmvfRSMFU54tgcXU65IQ2tSa4dvPt0oe-9GwwpmZC0zNDVBG1i2I4-DWYVxtjnvwzlSklZEqb-p4gWvNRqT9GJcjGkFH1jNrHtbPwyBMy-djPVbnLt5qd2s8smNplShvsPH3-j_3F9A1NphTo</recordid><startdate>20200702</startdate><enddate>20200702</enddate><creator>Ma, He</creator><creator>Govoni, Marco</creator><creator>Galli, Giulia</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8001-5290</orcidid><orcidid>https://orcid.org/0000-0001-6303-2403</orcidid><orcidid>https://orcid.org/0000000163032403</orcidid><orcidid>https://orcid.org/0000000280015290</orcidid></search><sort><creationdate>20200702</creationdate><title>Quantum simulations of materials on near-term quantum computers</title><author>Ma, He ; Govoni, Marco ; Galli, Giulia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-23cbc079e00af25b97c8cd9df9d0d8fa3db32bb335aae0d92493ee7e7538bc1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1034</topic><topic>639/638/563</topic><topic>639/766/119</topic><topic>Atomic properties</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Computer simulation</topic><topic>Computers</topic><topic>Density functional theory</topic><topic>Electron states</topic><topic>Embedding</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, He</creatorcontrib><creatorcontrib>Govoni, Marco</creatorcontrib><creatorcontrib>Galli, Giulia</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, He</au><au>Govoni, Marco</au><au>Galli, Giulia</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum simulations of materials on near-term quantum computers</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2020-07-02</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>85</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Quantum computers hold promise to enable efficient simulations of the properties of molecules and materials; however, at present they only permit ab initio calculations of a few atoms, due to a limited number of qubits. In order to harness the power of near-term quantum computers for simulations of larger systems, it is desirable to develop hybrid quantum-classical methods where the quantum computation is restricted to a small portion of the system. This is of particular relevance for molecules and solids where an active region requires a higher level of theoretical accuracy than its environment. Here, we present a quantum embedding theory for the calculation of strongly-correlated electronic states of active regions, with the rest of the system described within density functional theory. We demonstrate the accuracy and effectiveness of the approach by investigating several defect quantum bits in semiconductors that are of great interest for quantum information technologies. We perform calculations on quantum computers and show that they yield results in agreement with those obtained with exact diagonalization on classical architectures, paving the way to simulations of realistic materials on near-term quantum computers.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-020-00353-z</doi><orcidid>https://orcid.org/0000-0002-8001-5290</orcidid><orcidid>https://orcid.org/0000-0001-6303-2403</orcidid><orcidid>https://orcid.org/0000000163032403</orcidid><orcidid>https://orcid.org/0000000280015290</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2020-07, Vol.6 (1), Article 85 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_osti_scitechconnect_1635726 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals |
subjects | 639/301/1034 639/638/563 639/766/119 Atomic properties Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Computer simulation Computers Density functional theory Electron states Embedding Materials Science Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics MATHEMATICS AND COMPUTING Quantum computers Quantum computing Quantum phenomena Qubits (quantum computing) Simulation Theoretical |
title | Quantum simulations of materials on near-term quantum computers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A17%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20simulations%20of%20materials%20on%20near-term%20quantum%20computers&rft.jtitle=npj%20computational%20materials&rft.au=Ma,%20He&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-07-02&rft.volume=6&rft.issue=1&rft.artnum=85&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-020-00353-z&rft_dat=%3Cproquest_osti_%3E2419546988%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419546988&rft_id=info:pmid/&rfr_iscdi=true |