Comparison of gamma-ray spectral analysis methods for thick-walled UF6 cylinders

Three data analysis methods were compared for gamma ray spectra collected by planar and coaxial high-purity germanium detectors (HPGe) on thick-walled uranium hexafluoride cylinders. The cylinder contents range from natural to low-enriched uranium (4.95% 235U). Each spectrum was analyzed with the tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2020-10, Vol.977 (C), p.164291, Article 164291
Hauptverfasser: Greaney, Allison T., Smith, Susan K., Venkataraman, Ramkumar, Richards, Jason M., Fugate, Glenn A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 164291
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 977
creator Greaney, Allison T.
Smith, Susan K.
Venkataraman, Ramkumar
Richards, Jason M.
Fugate, Glenn A.
description Three data analysis methods were compared for gamma ray spectra collected by planar and coaxial high-purity germanium detectors (HPGe) on thick-walled uranium hexafluoride cylinders. The cylinder contents range from natural to low-enriched uranium (4.95% 235U). Each spectrum was analyzed with the traditional 185.7 keV enrichment meter method, a 185.7/1001 keV ratio method, and the Fixed Energy Response Function Analysis with Multiple Efficiency (FRAM) software that utilizes low- and high-energy gamma rays and X-rays. When results for all cylinders were compared, the enrichment meter method and the 185.7/1001 keV peak ratio method consistently provided the most accurate data for all detector types. The error on the enrichment calculations analyzed with FRAM did not meet the international target value whereas those calculated with the enrichment meter and ratio method did. Enrichments calculated by FRAM were found to skew to higher values on natural uranium and to lower values on low-enriched uranium. FRAM calculated the least-precise enrichments; replicate analyses of single cylinders resulted in 235U values that varied by as much as 19%. FRAM does have the significant advantages in that it does not require the use of calibration cylinders, infinite thickness criteria are not necessary, and it can be applied to any HPGe detector. If calibration cylinders are available, the enrichment meter and 185.7/1001 peak ratio are the recommended methods as they are the most accurate and precise.
doi_str_mv 10.1016/j.nima.2020.164291
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1635431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900220306872</els_id><sourcerecordid>S0168900220306872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-d02067d5c457a21e51019f865e5d8ee63ccc6000693272b79ab685eae5ab019c3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU_Be9cm3SQNeJHFVWFBD-45pMnUzdomS1KU_ntT6tm5DAzvPd58CN2SckVKwu-PK-96vaIlzQe-ppKcoQWpBS0kE_wcLbKoLmRZ0kt0ldKxzCNFvUDvm9CfdHQpeBxa_Kn7XhdRjzidwAxRd1h73Y3JJdzDcAg24TZEPByc-Sp-dNeBxfstx2bsnLcQ0zW6aHWX4OZvL9F--_SxeSl2b8-vm8ddYSpBhsLmplxYZtZMaEqA5TdkW3MGzNYAvDLG8FySy4oK2gipG14z0MB0k5WmWqK7OTekwalk3ADmYIL3ubYivGLrimQRnUUmhpQitOoUM6c4KlKqCZw6qgmcmsCpGVw2PcwmyPW_HcQpHbwB6-IUboP7z_4LD112Sw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of gamma-ray spectral analysis methods for thick-walled UF6 cylinders</title><source>Elsevier ScienceDirect Journals</source><creator>Greaney, Allison T. ; Smith, Susan K. ; Venkataraman, Ramkumar ; Richards, Jason M. ; Fugate, Glenn A.</creator><creatorcontrib>Greaney, Allison T. ; Smith, Susan K. ; Venkataraman, Ramkumar ; Richards, Jason M. ; Fugate, Glenn A.</creatorcontrib><description>Three data analysis methods were compared for gamma ray spectra collected by planar and coaxial high-purity germanium detectors (HPGe) on thick-walled uranium hexafluoride cylinders. The cylinder contents range from natural to low-enriched uranium (4.95% 235U). Each spectrum was analyzed with the traditional 185.7 keV enrichment meter method, a 185.7/1001 keV ratio method, and the Fixed Energy Response Function Analysis with Multiple Efficiency (FRAM) software that utilizes low- and high-energy gamma rays and X-rays. When results for all cylinders were compared, the enrichment meter method and the 185.7/1001 keV peak ratio method consistently provided the most accurate data for all detector types. The error on the enrichment calculations analyzed with FRAM did not meet the international target value whereas those calculated with the enrichment meter and ratio method did. Enrichments calculated by FRAM were found to skew to higher values on natural uranium and to lower values on low-enriched uranium. FRAM calculated the least-precise enrichments; replicate analyses of single cylinders resulted in 235U values that varied by as much as 19%. FRAM does have the significant advantages in that it does not require the use of calibration cylinders, infinite thickness criteria are not necessary, and it can be applied to any HPGe detector. If calibration cylinders are available, the enrichment meter and 185.7/1001 peak ratio are the recommended methods as they are the most accurate and precise.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2020.164291</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Enrichment meter ; Gamma ray spectroscopy ; Uranium</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2020-10, Vol.977 (C), p.164291, Article 164291</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-d02067d5c457a21e51019f865e5d8ee63ccc6000693272b79ab685eae5ab019c3</citedby><cites>FETCH-LOGICAL-c371t-d02067d5c457a21e51019f865e5d8ee63ccc6000693272b79ab685eae5ab019c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168900220306872$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1635431$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Greaney, Allison T.</creatorcontrib><creatorcontrib>Smith, Susan K.</creatorcontrib><creatorcontrib>Venkataraman, Ramkumar</creatorcontrib><creatorcontrib>Richards, Jason M.</creatorcontrib><creatorcontrib>Fugate, Glenn A.</creatorcontrib><title>Comparison of gamma-ray spectral analysis methods for thick-walled UF6 cylinders</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>Three data analysis methods were compared for gamma ray spectra collected by planar and coaxial high-purity germanium detectors (HPGe) on thick-walled uranium hexafluoride cylinders. The cylinder contents range from natural to low-enriched uranium (4.95% 235U). Each spectrum was analyzed with the traditional 185.7 keV enrichment meter method, a 185.7/1001 keV ratio method, and the Fixed Energy Response Function Analysis with Multiple Efficiency (FRAM) software that utilizes low- and high-energy gamma rays and X-rays. When results for all cylinders were compared, the enrichment meter method and the 185.7/1001 keV peak ratio method consistently provided the most accurate data for all detector types. The error on the enrichment calculations analyzed with FRAM did not meet the international target value whereas those calculated with the enrichment meter and ratio method did. Enrichments calculated by FRAM were found to skew to higher values on natural uranium and to lower values on low-enriched uranium. FRAM calculated the least-precise enrichments; replicate analyses of single cylinders resulted in 235U values that varied by as much as 19%. FRAM does have the significant advantages in that it does not require the use of calibration cylinders, infinite thickness criteria are not necessary, and it can be applied to any HPGe detector. If calibration cylinders are available, the enrichment meter and 185.7/1001 peak ratio are the recommended methods as they are the most accurate and precise.</description><subject>Enrichment meter</subject><subject>Gamma ray spectroscopy</subject><subject>Uranium</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU_Be9cm3SQNeJHFVWFBD-45pMnUzdomS1KU_ntT6tm5DAzvPd58CN2SckVKwu-PK-96vaIlzQe-ppKcoQWpBS0kE_wcLbKoLmRZ0kt0ldKxzCNFvUDvm9CfdHQpeBxa_Kn7XhdRjzidwAxRd1h73Y3JJdzDcAg24TZEPByc-Sp-dNeBxfstx2bsnLcQ0zW6aHWX4OZvL9F--_SxeSl2b8-vm8ddYSpBhsLmplxYZtZMaEqA5TdkW3MGzNYAvDLG8FySy4oK2gipG14z0MB0k5WmWqK7OTekwalk3ADmYIL3ubYivGLrimQRnUUmhpQitOoUM6c4KlKqCZw6qgmcmsCpGVw2PcwmyPW_HcQpHbwB6-IUboP7z_4LD112Sw</recordid><startdate>20201011</startdate><enddate>20201011</enddate><creator>Greaney, Allison T.</creator><creator>Smith, Susan K.</creator><creator>Venkataraman, Ramkumar</creator><creator>Richards, Jason M.</creator><creator>Fugate, Glenn A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20201011</creationdate><title>Comparison of gamma-ray spectral analysis methods for thick-walled UF6 cylinders</title><author>Greaney, Allison T. ; Smith, Susan K. ; Venkataraman, Ramkumar ; Richards, Jason M. ; Fugate, Glenn A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-d02067d5c457a21e51019f865e5d8ee63ccc6000693272b79ab685eae5ab019c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Enrichment meter</topic><topic>Gamma ray spectroscopy</topic><topic>Uranium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greaney, Allison T.</creatorcontrib><creatorcontrib>Smith, Susan K.</creatorcontrib><creatorcontrib>Venkataraman, Ramkumar</creatorcontrib><creatorcontrib>Richards, Jason M.</creatorcontrib><creatorcontrib>Fugate, Glenn A.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greaney, Allison T.</au><au>Smith, Susan K.</au><au>Venkataraman, Ramkumar</au><au>Richards, Jason M.</au><au>Fugate, Glenn A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of gamma-ray spectral analysis methods for thick-walled UF6 cylinders</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2020-10-11</date><risdate>2020</risdate><volume>977</volume><issue>C</issue><spage>164291</spage><pages>164291-</pages><artnum>164291</artnum><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>Three data analysis methods were compared for gamma ray spectra collected by planar and coaxial high-purity germanium detectors (HPGe) on thick-walled uranium hexafluoride cylinders. The cylinder contents range from natural to low-enriched uranium (4.95% 235U). Each spectrum was analyzed with the traditional 185.7 keV enrichment meter method, a 185.7/1001 keV ratio method, and the Fixed Energy Response Function Analysis with Multiple Efficiency (FRAM) software that utilizes low- and high-energy gamma rays and X-rays. When results for all cylinders were compared, the enrichment meter method and the 185.7/1001 keV peak ratio method consistently provided the most accurate data for all detector types. The error on the enrichment calculations analyzed with FRAM did not meet the international target value whereas those calculated with the enrichment meter and ratio method did. Enrichments calculated by FRAM were found to skew to higher values on natural uranium and to lower values on low-enriched uranium. FRAM calculated the least-precise enrichments; replicate analyses of single cylinders resulted in 235U values that varied by as much as 19%. FRAM does have the significant advantages in that it does not require the use of calibration cylinders, infinite thickness criteria are not necessary, and it can be applied to any HPGe detector. If calibration cylinders are available, the enrichment meter and 185.7/1001 peak ratio are the recommended methods as they are the most accurate and precise.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2020.164291</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2020-10, Vol.977 (C), p.164291, Article 164291
issn 0168-9002
1872-9576
language eng
recordid cdi_osti_scitechconnect_1635431
source Elsevier ScienceDirect Journals
subjects Enrichment meter
Gamma ray spectroscopy
Uranium
title Comparison of gamma-ray spectral analysis methods for thick-walled UF6 cylinders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20gamma-ray%20spectral%20analysis%20methods%20for%20thick-walled%20UF6%20cylinders&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Greaney,%20Allison%20T.&rft.date=2020-10-11&rft.volume=977&rft.issue=C&rft.spage=164291&rft.pages=164291-&rft.artnum=164291&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2020.164291&rft_dat=%3Celsevier_osti_%3ES0168900220306872%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168900220306872&rfr_iscdi=true