Electron acceleration in laboratory-produced turbulent collisionless shocks

Astrophysical collisionless shocks are among the most powerful particle accelerators in the Universe. Generated by violent interactions of supersonic plasma flows with the interstellar medium, supernova remnant shocks are observed to amplify magnetic fields 1 and accelerate electrons and protons to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2020-09, Vol.16 (9), p.916-920
Hauptverfasser: Fiuza, F., Swadling, G. F., Grassi, A., Rinderknecht, H. G., Higginson, D. P., Ryutov, D. D., Bruulsema, C., Drake, R. P., Funk, S., Glenzer, S., Gregori, G., Li, C. K., Pollock, B. B., Remington, B. A., Ross, J. S., Rozmus, W., Sakawa, Y., Spitkovsky, A., Wilks, S., Park, H.-S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 920
container_issue 9
container_start_page 916
container_title Nature physics
container_volume 16
creator Fiuza, F.
Swadling, G. F.
Grassi, A.
Rinderknecht, H. G.
Higginson, D. P.
Ryutov, D. D.
Bruulsema, C.
Drake, R. P.
Funk, S.
Glenzer, S.
Gregori, G.
Li, C. K.
Pollock, B. B.
Remington, B. A.
Ross, J. S.
Rozmus, W.
Sakawa, Y.
Spitkovsky, A.
Wilks, S.
Park, H.-S.
description Astrophysical collisionless shocks are among the most powerful particle accelerators in the Universe. Generated by violent interactions of supersonic plasma flows with the interstellar medium, supernova remnant shocks are observed to amplify magnetic fields 1 and accelerate electrons and protons to highly relativistic speeds 2 – 4 . In the well-established model of diffusive shock acceleration 5 , relativistic particles are accelerated by repeated shock crossings. However, this requires a separate mechanism that pre-accelerates particles to enable shock crossing. This is known as the ‘injection problem’, which is particularly relevant for electrons, and remains one of the most important puzzles in shock acceleration 6 . In most astrophysical shocks, the details of the shock structure cannot be directly resolved, making it challenging to identify the injection mechanism. Here we report results from laser-driven plasma flow experiments, and related simulations, that probe the formation of turbulent collisionless shocks in conditions relevant to young supernova remnants. We show that electrons can be effectively accelerated in a first-order Fermi process by small-scale turbulence produced within the shock transition to relativistic non-thermal energies, helping overcome the injection problem. Our observations provide new insight into electron injection at shocks and open the way for controlled laboratory studies of the physics underlying cosmic accelerators. In laser–plasma experiments complemented by simulations, electron acceleration is observed in turbulent collisionless shocks. This work clarifies the pre-acceleration to relativistic energies required for the onset of diffusive shock acceleration.
doi_str_mv 10.1038/s41567-020-0919-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1635109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440213381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-1d0a68829d0c64e3cdf6a8d252e7c9324651309329835962520b6bfd3ec7efc23</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEiXwAewiWBs8tuMkS1SVh6jEBtZWMnFoiomL7Sz697gKghWreejc0Z1LyCWwG2Ciug0SClVSxhllNdRUHpEFlLKgXFZw_NuX4pSchbBlTHIFYkGeV9Zg9G7MG0RjjW_ikIZhzG3TujQ5v6c777oJTZfHybeTNWPM0Vk7hIRaE0IeNg4_wjk56RsbzMVPzcjb_ep1-UjXLw9Py7s1RVnwSKFjjaoqXncMlTQCu141VccLbkqsBZeqAMFSU1eiqFXas1a1fScMlqZHLjJyNd91IQ464BANbtCNY_pEgxIFJHVGrmcomf-aTIh66yY_Jl-aS8k4CFFBomCm0LsQvOn1zg-fjd9rYPoQrJ6D1SlYfQhWy6ThsyYkdnw3_u_y_6Jvnzl68A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440213381</pqid></control><display><type>article</type><title>Electron acceleration in laboratory-produced turbulent collisionless shocks</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fiuza, F. ; Swadling, G. F. ; Grassi, A. ; Rinderknecht, H. G. ; Higginson, D. P. ; Ryutov, D. D. ; Bruulsema, C. ; Drake, R. P. ; Funk, S. ; Glenzer, S. ; Gregori, G. ; Li, C. K. ; Pollock, B. B. ; Remington, B. A. ; Ross, J. S. ; Rozmus, W. ; Sakawa, Y. ; Spitkovsky, A. ; Wilks, S. ; Park, H.-S.</creator><creatorcontrib>Fiuza, F. ; Swadling, G. F. ; Grassi, A. ; Rinderknecht, H. G. ; Higginson, D. P. ; Ryutov, D. D. ; Bruulsema, C. ; Drake, R. P. ; Funk, S. ; Glenzer, S. ; Gregori, G. ; Li, C. K. ; Pollock, B. B. ; Remington, B. A. ; Ross, J. S. ; Rozmus, W. ; Sakawa, Y. ; Spitkovsky, A. ; Wilks, S. ; Park, H.-S. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; Princeton Univ., NJ (United States) ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Astrophysical collisionless shocks are among the most powerful particle accelerators in the Universe. Generated by violent interactions of supersonic plasma flows with the interstellar medium, supernova remnant shocks are observed to amplify magnetic fields 1 and accelerate electrons and protons to highly relativistic speeds 2 – 4 . In the well-established model of diffusive shock acceleration 5 , relativistic particles are accelerated by repeated shock crossings. However, this requires a separate mechanism that pre-accelerates particles to enable shock crossing. This is known as the ‘injection problem’, which is particularly relevant for electrons, and remains one of the most important puzzles in shock acceleration 6 . In most astrophysical shocks, the details of the shock structure cannot be directly resolved, making it challenging to identify the injection mechanism. Here we report results from laser-driven plasma flow experiments, and related simulations, that probe the formation of turbulent collisionless shocks in conditions relevant to young supernova remnants. We show that electrons can be effectively accelerated in a first-order Fermi process by small-scale turbulence produced within the shock transition to relativistic non-thermal energies, helping overcome the injection problem. Our observations provide new insight into electron injection at shocks and open the way for controlled laboratory studies of the physics underlying cosmic accelerators. In laser–plasma experiments complemented by simulations, electron acceleration is observed in turbulent collisionless shocks. This work clarifies the pre-acceleration to relativistic energies required for the onset of diffusive shock acceleration.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-020-0919-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/1960/1134 ; 639/766/1960/1135 ; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ASTRONOMY AND ASTROPHYSICS ; astrophysical plasmas ; Atomic ; Classical and Continuum Physics ; collisionless shocks ; Complex Systems ; Computational fluid dynamics ; Computer simulation ; Condensed Matter Physics ; Electron acceleration ; high-energy-density plasmas ; High-energy-density plasmas, astrophysical plasmas, collisionless shocks, particle acceleration ; Injection ; Interstellar matter ; Laboratories ; Letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; particle acceleration ; Particle accelerators ; Particle physics ; Physics ; Physics - Plasma physics ; Physics and Astronomy ; Plasmas (physics) ; Relativistic effects ; Relativistic particles ; Supernova remnants ; Theoretical ; Turbulence</subject><ispartof>Nature physics, 2020-09, Vol.16 (9), p.916-920</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-1d0a68829d0c64e3cdf6a8d252e7c9324651309329835962520b6bfd3ec7efc23</citedby><cites>FETCH-LOGICAL-c452t-1d0a68829d0c64e3cdf6a8d252e7c9324651309329835962520b6bfd3ec7efc23</cites><orcidid>0000-0003-3314-7060 ; 0000-0002-8502-5535 ; 0000-0002-7699-3788 ; 0000-0001-8370-8837 ; 0000-0002-5450-9844 ; 0000000276993788 ; 0000000254509844 ; 0000000333147060 ; 0000000285025535 ; 0000000183708837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-020-0919-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-020-0919-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1635109$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiuza, F.</creatorcontrib><creatorcontrib>Swadling, G. F.</creatorcontrib><creatorcontrib>Grassi, A.</creatorcontrib><creatorcontrib>Rinderknecht, H. G.</creatorcontrib><creatorcontrib>Higginson, D. P.</creatorcontrib><creatorcontrib>Ryutov, D. D.</creatorcontrib><creatorcontrib>Bruulsema, C.</creatorcontrib><creatorcontrib>Drake, R. P.</creatorcontrib><creatorcontrib>Funk, S.</creatorcontrib><creatorcontrib>Glenzer, S.</creatorcontrib><creatorcontrib>Gregori, G.</creatorcontrib><creatorcontrib>Li, C. K.</creatorcontrib><creatorcontrib>Pollock, B. B.</creatorcontrib><creatorcontrib>Remington, B. A.</creatorcontrib><creatorcontrib>Ross, J. S.</creatorcontrib><creatorcontrib>Rozmus, W.</creatorcontrib><creatorcontrib>Sakawa, Y.</creatorcontrib><creatorcontrib>Spitkovsky, A.</creatorcontrib><creatorcontrib>Wilks, S.</creatorcontrib><creatorcontrib>Park, H.-S.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Electron acceleration in laboratory-produced turbulent collisionless shocks</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Astrophysical collisionless shocks are among the most powerful particle accelerators in the Universe. Generated by violent interactions of supersonic plasma flows with the interstellar medium, supernova remnant shocks are observed to amplify magnetic fields 1 and accelerate electrons and protons to highly relativistic speeds 2 – 4 . In the well-established model of diffusive shock acceleration 5 , relativistic particles are accelerated by repeated shock crossings. However, this requires a separate mechanism that pre-accelerates particles to enable shock crossing. This is known as the ‘injection problem’, which is particularly relevant for electrons, and remains one of the most important puzzles in shock acceleration 6 . In most astrophysical shocks, the details of the shock structure cannot be directly resolved, making it challenging to identify the injection mechanism. Here we report results from laser-driven plasma flow experiments, and related simulations, that probe the formation of turbulent collisionless shocks in conditions relevant to young supernova remnants. We show that electrons can be effectively accelerated in a first-order Fermi process by small-scale turbulence produced within the shock transition to relativistic non-thermal energies, helping overcome the injection problem. Our observations provide new insight into electron injection at shocks and open the way for controlled laboratory studies of the physics underlying cosmic accelerators. In laser–plasma experiments complemented by simulations, electron acceleration is observed in turbulent collisionless shocks. This work clarifies the pre-acceleration to relativistic energies required for the onset of diffusive shock acceleration.</description><subject>639/766/1960/1134</subject><subject>639/766/1960/1135</subject><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>astrophysical plasmas</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>collisionless shocks</subject><subject>Complex Systems</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Electron acceleration</subject><subject>high-energy-density plasmas</subject><subject>High-energy-density plasmas, astrophysical plasmas, collisionless shocks, particle acceleration</subject><subject>Injection</subject><subject>Interstellar matter</subject><subject>Laboratories</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>particle acceleration</subject><subject>Particle accelerators</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Physics - Plasma physics</subject><subject>Physics and Astronomy</subject><subject>Plasmas (physics)</subject><subject>Relativistic effects</subject><subject>Relativistic particles</subject><subject>Supernova remnants</subject><subject>Theoretical</subject><subject>Turbulence</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRS0EEiXwAewiWBs8tuMkS1SVh6jEBtZWMnFoiomL7Sz697gKghWreejc0Z1LyCWwG2Ciug0SClVSxhllNdRUHpEFlLKgXFZw_NuX4pSchbBlTHIFYkGeV9Zg9G7MG0RjjW_ikIZhzG3TujQ5v6c777oJTZfHybeTNWPM0Vk7hIRaE0IeNg4_wjk56RsbzMVPzcjb_ep1-UjXLw9Py7s1RVnwSKFjjaoqXncMlTQCu141VccLbkqsBZeqAMFSU1eiqFXas1a1fScMlqZHLjJyNd91IQ464BANbtCNY_pEgxIFJHVGrmcomf-aTIh66yY_Jl-aS8k4CFFBomCm0LsQvOn1zg-fjd9rYPoQrJ6D1SlYfQhWy6ThsyYkdnw3_u_y_6Jvnzl68A</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Fiuza, F.</creator><creator>Swadling, G. F.</creator><creator>Grassi, A.</creator><creator>Rinderknecht, H. G.</creator><creator>Higginson, D. P.</creator><creator>Ryutov, D. D.</creator><creator>Bruulsema, C.</creator><creator>Drake, R. P.</creator><creator>Funk, S.</creator><creator>Glenzer, S.</creator><creator>Gregori, G.</creator><creator>Li, C. K.</creator><creator>Pollock, B. B.</creator><creator>Remington, B. A.</creator><creator>Ross, J. S.</creator><creator>Rozmus, W.</creator><creator>Sakawa, Y.</creator><creator>Spitkovsky, A.</creator><creator>Wilks, S.</creator><creator>Park, H.-S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3314-7060</orcidid><orcidid>https://orcid.org/0000-0002-8502-5535</orcidid><orcidid>https://orcid.org/0000-0002-7699-3788</orcidid><orcidid>https://orcid.org/0000-0001-8370-8837</orcidid><orcidid>https://orcid.org/0000-0002-5450-9844</orcidid><orcidid>https://orcid.org/0000000276993788</orcidid><orcidid>https://orcid.org/0000000254509844</orcidid><orcidid>https://orcid.org/0000000333147060</orcidid><orcidid>https://orcid.org/0000000285025535</orcidid><orcidid>https://orcid.org/0000000183708837</orcidid></search><sort><creationdate>20200901</creationdate><title>Electron acceleration in laboratory-produced turbulent collisionless shocks</title><author>Fiuza, F. ; Swadling, G. F. ; Grassi, A. ; Rinderknecht, H. G. ; Higginson, D. P. ; Ryutov, D. D. ; Bruulsema, C. ; Drake, R. P. ; Funk, S. ; Glenzer, S. ; Gregori, G. ; Li, C. K. ; Pollock, B. B. ; Remington, B. A. ; Ross, J. S. ; Rozmus, W. ; Sakawa, Y. ; Spitkovsky, A. ; Wilks, S. ; Park, H.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-1d0a68829d0c64e3cdf6a8d252e7c9324651309329835962520b6bfd3ec7efc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/1960/1134</topic><topic>639/766/1960/1135</topic><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>astrophysical plasmas</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>collisionless shocks</topic><topic>Complex Systems</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Electron acceleration</topic><topic>high-energy-density plasmas</topic><topic>High-energy-density plasmas, astrophysical plasmas, collisionless shocks, particle acceleration</topic><topic>Injection</topic><topic>Interstellar matter</topic><topic>Laboratories</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>particle acceleration</topic><topic>Particle accelerators</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Physics - Plasma physics</topic><topic>Physics and Astronomy</topic><topic>Plasmas (physics)</topic><topic>Relativistic effects</topic><topic>Relativistic particles</topic><topic>Supernova remnants</topic><topic>Theoretical</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiuza, F.</creatorcontrib><creatorcontrib>Swadling, G. F.</creatorcontrib><creatorcontrib>Grassi, A.</creatorcontrib><creatorcontrib>Rinderknecht, H. G.</creatorcontrib><creatorcontrib>Higginson, D. P.</creatorcontrib><creatorcontrib>Ryutov, D. D.</creatorcontrib><creatorcontrib>Bruulsema, C.</creatorcontrib><creatorcontrib>Drake, R. P.</creatorcontrib><creatorcontrib>Funk, S.</creatorcontrib><creatorcontrib>Glenzer, S.</creatorcontrib><creatorcontrib>Gregori, G.</creatorcontrib><creatorcontrib>Li, C. K.</creatorcontrib><creatorcontrib>Pollock, B. B.</creatorcontrib><creatorcontrib>Remington, B. A.</creatorcontrib><creatorcontrib>Ross, J. S.</creatorcontrib><creatorcontrib>Rozmus, W.</creatorcontrib><creatorcontrib>Sakawa, Y.</creatorcontrib><creatorcontrib>Spitkovsky, A.</creatorcontrib><creatorcontrib>Wilks, S.</creatorcontrib><creatorcontrib>Park, H.-S.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiuza, F.</au><au>Swadling, G. F.</au><au>Grassi, A.</au><au>Rinderknecht, H. G.</au><au>Higginson, D. P.</au><au>Ryutov, D. D.</au><au>Bruulsema, C.</au><au>Drake, R. P.</au><au>Funk, S.</au><au>Glenzer, S.</au><au>Gregori, G.</au><au>Li, C. K.</au><au>Pollock, B. B.</au><au>Remington, B. A.</au><au>Ross, J. S.</au><au>Rozmus, W.</au><au>Sakawa, Y.</au><au>Spitkovsky, A.</au><au>Wilks, S.</au><au>Park, H.-S.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>Princeton Univ., NJ (United States)</aucorp><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron acceleration in laboratory-produced turbulent collisionless shocks</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>16</volume><issue>9</issue><spage>916</spage><epage>920</epage><pages>916-920</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Astrophysical collisionless shocks are among the most powerful particle accelerators in the Universe. Generated by violent interactions of supersonic plasma flows with the interstellar medium, supernova remnant shocks are observed to amplify magnetic fields 1 and accelerate electrons and protons to highly relativistic speeds 2 – 4 . In the well-established model of diffusive shock acceleration 5 , relativistic particles are accelerated by repeated shock crossings. However, this requires a separate mechanism that pre-accelerates particles to enable shock crossing. This is known as the ‘injection problem’, which is particularly relevant for electrons, and remains one of the most important puzzles in shock acceleration 6 . In most astrophysical shocks, the details of the shock structure cannot be directly resolved, making it challenging to identify the injection mechanism. Here we report results from laser-driven plasma flow experiments, and related simulations, that probe the formation of turbulent collisionless shocks in conditions relevant to young supernova remnants. We show that electrons can be effectively accelerated in a first-order Fermi process by small-scale turbulence produced within the shock transition to relativistic non-thermal energies, helping overcome the injection problem. Our observations provide new insight into electron injection at shocks and open the way for controlled laboratory studies of the physics underlying cosmic accelerators. In laser–plasma experiments complemented by simulations, electron acceleration is observed in turbulent collisionless shocks. This work clarifies the pre-acceleration to relativistic energies required for the onset of diffusive shock acceleration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-020-0919-4</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3314-7060</orcidid><orcidid>https://orcid.org/0000-0002-8502-5535</orcidid><orcidid>https://orcid.org/0000-0002-7699-3788</orcidid><orcidid>https://orcid.org/0000-0001-8370-8837</orcidid><orcidid>https://orcid.org/0000-0002-5450-9844</orcidid><orcidid>https://orcid.org/0000000276993788</orcidid><orcidid>https://orcid.org/0000000254509844</orcidid><orcidid>https://orcid.org/0000000333147060</orcidid><orcidid>https://orcid.org/0000000285025535</orcidid><orcidid>https://orcid.org/0000000183708837</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-09, Vol.16 (9), p.916-920
issn 1745-2473
1745-2481
language eng
recordid cdi_osti_scitechconnect_1635109
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/766/1960/1134
639/766/1960/1135
70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ASTRONOMY AND ASTROPHYSICS
astrophysical plasmas
Atomic
Classical and Continuum Physics
collisionless shocks
Complex Systems
Computational fluid dynamics
Computer simulation
Condensed Matter Physics
Electron acceleration
high-energy-density plasmas
High-energy-density plasmas, astrophysical plasmas, collisionless shocks, particle acceleration
Injection
Interstellar matter
Laboratories
Letter
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
particle acceleration
Particle accelerators
Particle physics
Physics
Physics - Plasma physics
Physics and Astronomy
Plasmas (physics)
Relativistic effects
Relativistic particles
Supernova remnants
Theoretical
Turbulence
title Electron acceleration in laboratory-produced turbulent collisionless shocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20acceleration%20in%20laboratory-produced%20turbulent%20collisionless%20shocks&rft.jtitle=Nature%20physics&rft.au=Fiuza,%20F.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-09-01&rft.volume=16&rft.issue=9&rft.spage=916&rft.epage=920&rft.pages=916-920&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-020-0919-4&rft_dat=%3Cproquest_osti_%3E2440213381%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440213381&rft_id=info:pmid/&rfr_iscdi=true