Inverse-Designed Photonics for Semiconductor Foundries

Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers and enabling new applications. Further improving the density and performance of silicon photonics, however, has been challenging due to the large size and limited performance of tradition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS photonics 2020-03, Vol.7 (3), p.569-575
Hauptverfasser: Piggott, Alexander Y, Ma, Eric Y, Su, Logan, Ahn, Geun Ho, Sapra, Neil V, Vercruysse, Dries, Netherton, Andrew M, Khope, Akhilesh S. P, Bowers, John E, Vučković, Jelena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 575
container_issue 3
container_start_page 569
container_title ACS photonics
container_volume 7
creator Piggott, Alexander Y
Ma, Eric Y
Su, Logan
Ahn, Geun Ho
Sapra, Neil V
Vercruysse, Dries
Netherton, Andrew M
Khope, Akhilesh S. P
Bowers, John E
Vučković, Jelena
description Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers and enabling new applications. Further improving the density and performance of silicon photonics, however, has been challenging due to the large size and limited performance of traditional semianalytically designed components. Automated optimization of photonic devices using inverse design is a promising path forward but has, until now, faced difficulties in producing designs that can be fabricated reliably at scale. Here we experimentally demonstrate four inverse-designed devices made successfully in a commercial silicon photonics foundry: a spatial mode multiplexer, wavelength demultiplexer, 50–50 directional coupler, and 3-way power splitter. These devices are efficient, robust to fabrication variability, and compact, with footprints only a few micrometers across. They pave the way forward for the widespread practical use of inverse design.
doi_str_mv 10.1021/acsphotonics.9b01540
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1633864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b856411238</sourcerecordid><originalsourceid>FETCH-LOGICAL-a365t-8deb12364e308035fbaf82bf3c035fa2a073c07fa73b2a0fe03194fe63d273543</originalsourceid><addsrcrecordid>eNp9UMFKAzEQDaJgqf0DD8X71kkmm90epVpbKCio55DNTmyK3ZRkK_j3prRCT57mPea9x8xj7JbDhIPg98am3Tr0ofM2TaYN8FLCBRsIRCgkCHF5hq_ZKKUNAHAoUSk5YGrZfVNMVDxS8p8dtePXv7CxC3H8RltvQ9fubZ_ZPOy7NnpKN-zKma9Eo9Mcso_50_tsUaxenpezh1VhUJV9UbfUcIFKEkINWLrGuFo0Du2BGGGgyrBypsImE0eAfCodKWxFhaXEIbs75obUe52s78mu8z0d2V5zhVirg0geRTaGlCI5vYt-a-KP5qAPHenzjvSpo2yDoy1v9SbsY5c_-d_yC-eBbf0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inverse-Designed Photonics for Semiconductor Foundries</title><source>American Chemical Society Journals</source><creator>Piggott, Alexander Y ; Ma, Eric Y ; Su, Logan ; Ahn, Geun Ho ; Sapra, Neil V ; Vercruysse, Dries ; Netherton, Andrew M ; Khope, Akhilesh S. P ; Bowers, John E ; Vučković, Jelena</creator><creatorcontrib>Piggott, Alexander Y ; Ma, Eric Y ; Su, Logan ; Ahn, Geun Ho ; Sapra, Neil V ; Vercruysse, Dries ; Netherton, Andrew M ; Khope, Akhilesh S. P ; Bowers, John E ; Vučković, Jelena ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers and enabling new applications. Further improving the density and performance of silicon photonics, however, has been challenging due to the large size and limited performance of traditional semianalytically designed components. Automated optimization of photonic devices using inverse design is a promising path forward but has, until now, faced difficulties in producing designs that can be fabricated reliably at scale. Here we experimentally demonstrate four inverse-designed devices made successfully in a commercial silicon photonics foundry: a spatial mode multiplexer, wavelength demultiplexer, 50–50 directional coupler, and 3-way power splitter. These devices are efficient, robust to fabrication variability, and compact, with footprints only a few micrometers across. They pave the way forward for the widespread practical use of inverse design.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.9b01540</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>foundry fabrication ; inverse design ; MATERIALS SCIENCE ; nanophotonics ; silicon photonics</subject><ispartof>ACS photonics, 2020-03, Vol.7 (3), p.569-575</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a365t-8deb12364e308035fbaf82bf3c035fa2a073c07fa73b2a0fe03194fe63d273543</citedby><cites>FETCH-LOGICAL-a365t-8deb12364e308035fbaf82bf3c035fa2a073c07fa73b2a0fe03194fe63d273543</cites><orcidid>0000-0002-0539-1501 ; 0000-0002-4761-7804 ; 0000-0002-4050-7338 ; 0000000247617804 ; 0000000205391501 ; 0000000240507338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.9b01540$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.9b01540$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1633864$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Piggott, Alexander Y</creatorcontrib><creatorcontrib>Ma, Eric Y</creatorcontrib><creatorcontrib>Su, Logan</creatorcontrib><creatorcontrib>Ahn, Geun Ho</creatorcontrib><creatorcontrib>Sapra, Neil V</creatorcontrib><creatorcontrib>Vercruysse, Dries</creatorcontrib><creatorcontrib>Netherton, Andrew M</creatorcontrib><creatorcontrib>Khope, Akhilesh S. P</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Vučković, Jelena</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Inverse-Designed Photonics for Semiconductor Foundries</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers and enabling new applications. Further improving the density and performance of silicon photonics, however, has been challenging due to the large size and limited performance of traditional semianalytically designed components. Automated optimization of photonic devices using inverse design is a promising path forward but has, until now, faced difficulties in producing designs that can be fabricated reliably at scale. Here we experimentally demonstrate four inverse-designed devices made successfully in a commercial silicon photonics foundry: a spatial mode multiplexer, wavelength demultiplexer, 50–50 directional coupler, and 3-way power splitter. These devices are efficient, robust to fabrication variability, and compact, with footprints only a few micrometers across. They pave the way forward for the widespread practical use of inverse design.</description><subject>foundry fabrication</subject><subject>inverse design</subject><subject>MATERIALS SCIENCE</subject><subject>nanophotonics</subject><subject>silicon photonics</subject><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEQDaJgqf0DD8X71kkmm90epVpbKCio55DNTmyK3ZRkK_j3prRCT57mPea9x8xj7JbDhIPg98am3Tr0ofM2TaYN8FLCBRsIRCgkCHF5hq_ZKKUNAHAoUSk5YGrZfVNMVDxS8p8dtePXv7CxC3H8RltvQ9fubZ_ZPOy7NnpKN-zKma9Eo9Mcso_50_tsUaxenpezh1VhUJV9UbfUcIFKEkINWLrGuFo0Du2BGGGgyrBypsImE0eAfCodKWxFhaXEIbs75obUe52s78mu8z0d2V5zhVirg0geRTaGlCI5vYt-a-KP5qAPHenzjvSpo2yDoy1v9SbsY5c_-d_yC-eBbf0</recordid><startdate>20200318</startdate><enddate>20200318</enddate><creator>Piggott, Alexander Y</creator><creator>Ma, Eric Y</creator><creator>Su, Logan</creator><creator>Ahn, Geun Ho</creator><creator>Sapra, Neil V</creator><creator>Vercruysse, Dries</creator><creator>Netherton, Andrew M</creator><creator>Khope, Akhilesh S. P</creator><creator>Bowers, John E</creator><creator>Vučković, Jelena</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0539-1501</orcidid><orcidid>https://orcid.org/0000-0002-4761-7804</orcidid><orcidid>https://orcid.org/0000-0002-4050-7338</orcidid><orcidid>https://orcid.org/0000000247617804</orcidid><orcidid>https://orcid.org/0000000205391501</orcidid><orcidid>https://orcid.org/0000000240507338</orcidid></search><sort><creationdate>20200318</creationdate><title>Inverse-Designed Photonics for Semiconductor Foundries</title><author>Piggott, Alexander Y ; Ma, Eric Y ; Su, Logan ; Ahn, Geun Ho ; Sapra, Neil V ; Vercruysse, Dries ; Netherton, Andrew M ; Khope, Akhilesh S. P ; Bowers, John E ; Vučković, Jelena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a365t-8deb12364e308035fbaf82bf3c035fa2a073c07fa73b2a0fe03194fe63d273543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>foundry fabrication</topic><topic>inverse design</topic><topic>MATERIALS SCIENCE</topic><topic>nanophotonics</topic><topic>silicon photonics</topic><toplevel>online_resources</toplevel><creatorcontrib>Piggott, Alexander Y</creatorcontrib><creatorcontrib>Ma, Eric Y</creatorcontrib><creatorcontrib>Su, Logan</creatorcontrib><creatorcontrib>Ahn, Geun Ho</creatorcontrib><creatorcontrib>Sapra, Neil V</creatorcontrib><creatorcontrib>Vercruysse, Dries</creatorcontrib><creatorcontrib>Netherton, Andrew M</creatorcontrib><creatorcontrib>Khope, Akhilesh S. P</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Vučković, Jelena</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piggott, Alexander Y</au><au>Ma, Eric Y</au><au>Su, Logan</au><au>Ahn, Geun Ho</au><au>Sapra, Neil V</au><au>Vercruysse, Dries</au><au>Netherton, Andrew M</au><au>Khope, Akhilesh S. P</au><au>Bowers, John E</au><au>Vučković, Jelena</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse-Designed Photonics for Semiconductor Foundries</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2020-03-18</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>569</spage><epage>575</epage><pages>569-575</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers and enabling new applications. Further improving the density and performance of silicon photonics, however, has been challenging due to the large size and limited performance of traditional semianalytically designed components. Automated optimization of photonic devices using inverse design is a promising path forward but has, until now, faced difficulties in producing designs that can be fabricated reliably at scale. Here we experimentally demonstrate four inverse-designed devices made successfully in a commercial silicon photonics foundry: a spatial mode multiplexer, wavelength demultiplexer, 50–50 directional coupler, and 3-way power splitter. These devices are efficient, robust to fabrication variability, and compact, with footprints only a few micrometers across. They pave the way forward for the widespread practical use of inverse design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.9b01540</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0539-1501</orcidid><orcidid>https://orcid.org/0000-0002-4761-7804</orcidid><orcidid>https://orcid.org/0000-0002-4050-7338</orcidid><orcidid>https://orcid.org/0000000247617804</orcidid><orcidid>https://orcid.org/0000000205391501</orcidid><orcidid>https://orcid.org/0000000240507338</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2020-03, Vol.7 (3), p.569-575
issn 2330-4022
2330-4022
language eng
recordid cdi_osti_scitechconnect_1633864
source American Chemical Society Journals
subjects foundry fabrication
inverse design
MATERIALS SCIENCE
nanophotonics
silicon photonics
title Inverse-Designed Photonics for Semiconductor Foundries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse-Designed%20Photonics%20for%20Semiconductor%20Foundries&rft.jtitle=ACS%20photonics&rft.au=Piggott,%20Alexander%20Y&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-03-18&rft.volume=7&rft.issue=3&rft.spage=569&rft.epage=575&rft.pages=569-575&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.9b01540&rft_dat=%3Cacs_osti_%3Eb856411238%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true