Inverse-Designed Photonics for Semiconductor Foundries
Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers and enabling new applications. Further improving the density and performance of silicon photonics, however, has been challenging due to the large size and limited performance of tradition...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2020-03, Vol.7 (3), p.569-575 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 575 |
---|---|
container_issue | 3 |
container_start_page | 569 |
container_title | ACS photonics |
container_volume | 7 |
creator | Piggott, Alexander Y Ma, Eric Y Su, Logan Ahn, Geun Ho Sapra, Neil V Vercruysse, Dries Netherton, Andrew M Khope, Akhilesh S. P Bowers, John E Vučković, Jelena |
description | Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers and enabling new applications. Further improving the density and performance of silicon photonics, however, has been challenging due to the large size and limited performance of traditional semianalytically designed components. Automated optimization of photonic devices using inverse design is a promising path forward but has, until now, faced difficulties in producing designs that can be fabricated reliably at scale. Here we experimentally demonstrate four inverse-designed devices made successfully in a commercial silicon photonics foundry: a spatial mode multiplexer, wavelength demultiplexer, 50–50 directional coupler, and 3-way power splitter. These devices are efficient, robust to fabrication variability, and compact, with footprints only a few micrometers across. They pave the way forward for the widespread practical use of inverse design. |
doi_str_mv | 10.1021/acsphotonics.9b01540 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1633864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b856411238</sourcerecordid><originalsourceid>FETCH-LOGICAL-a365t-8deb12364e308035fbaf82bf3c035fa2a073c07fa73b2a0fe03194fe63d273543</originalsourceid><addsrcrecordid>eNp9UMFKAzEQDaJgqf0DD8X71kkmm90epVpbKCio55DNTmyK3ZRkK_j3prRCT57mPea9x8xj7JbDhIPg98am3Tr0ofM2TaYN8FLCBRsIRCgkCHF5hq_ZKKUNAHAoUSk5YGrZfVNMVDxS8p8dtePXv7CxC3H8RltvQ9fubZ_ZPOy7NnpKN-zKma9Eo9Mcso_50_tsUaxenpezh1VhUJV9UbfUcIFKEkINWLrGuFo0Du2BGGGgyrBypsImE0eAfCodKWxFhaXEIbs75obUe52s78mu8z0d2V5zhVirg0geRTaGlCI5vYt-a-KP5qAPHenzjvSpo2yDoy1v9SbsY5c_-d_yC-eBbf0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inverse-Designed Photonics for Semiconductor Foundries</title><source>American Chemical Society Journals</source><creator>Piggott, Alexander Y ; Ma, Eric Y ; Su, Logan ; Ahn, Geun Ho ; Sapra, Neil V ; Vercruysse, Dries ; Netherton, Andrew M ; Khope, Akhilesh S. P ; Bowers, John E ; Vučković, Jelena</creator><creatorcontrib>Piggott, Alexander Y ; Ma, Eric Y ; Su, Logan ; Ahn, Geun Ho ; Sapra, Neil V ; Vercruysse, Dries ; Netherton, Andrew M ; Khope, Akhilesh S. P ; Bowers, John E ; Vučković, Jelena ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers and enabling new applications. Further improving the density and performance of silicon photonics, however, has been challenging due to the large size and limited performance of traditional semianalytically designed components. Automated optimization of photonic devices using inverse design is a promising path forward but has, until now, faced difficulties in producing designs that can be fabricated reliably at scale. Here we experimentally demonstrate four inverse-designed devices made successfully in a commercial silicon photonics foundry: a spatial mode multiplexer, wavelength demultiplexer, 50–50 directional coupler, and 3-way power splitter. These devices are efficient, robust to fabrication variability, and compact, with footprints only a few micrometers across. They pave the way forward for the widespread practical use of inverse design.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.9b01540</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>foundry fabrication ; inverse design ; MATERIALS SCIENCE ; nanophotonics ; silicon photonics</subject><ispartof>ACS photonics, 2020-03, Vol.7 (3), p.569-575</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a365t-8deb12364e308035fbaf82bf3c035fa2a073c07fa73b2a0fe03194fe63d273543</citedby><cites>FETCH-LOGICAL-a365t-8deb12364e308035fbaf82bf3c035fa2a073c07fa73b2a0fe03194fe63d273543</cites><orcidid>0000-0002-0539-1501 ; 0000-0002-4761-7804 ; 0000-0002-4050-7338 ; 0000000247617804 ; 0000000205391501 ; 0000000240507338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.9b01540$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.9b01540$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1633864$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Piggott, Alexander Y</creatorcontrib><creatorcontrib>Ma, Eric Y</creatorcontrib><creatorcontrib>Su, Logan</creatorcontrib><creatorcontrib>Ahn, Geun Ho</creatorcontrib><creatorcontrib>Sapra, Neil V</creatorcontrib><creatorcontrib>Vercruysse, Dries</creatorcontrib><creatorcontrib>Netherton, Andrew M</creatorcontrib><creatorcontrib>Khope, Akhilesh S. P</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Vučković, Jelena</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Inverse-Designed Photonics for Semiconductor Foundries</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers and enabling new applications. Further improving the density and performance of silicon photonics, however, has been challenging due to the large size and limited performance of traditional semianalytically designed components. Automated optimization of photonic devices using inverse design is a promising path forward but has, until now, faced difficulties in producing designs that can be fabricated reliably at scale. Here we experimentally demonstrate four inverse-designed devices made successfully in a commercial silicon photonics foundry: a spatial mode multiplexer, wavelength demultiplexer, 50–50 directional coupler, and 3-way power splitter. These devices are efficient, robust to fabrication variability, and compact, with footprints only a few micrometers across. They pave the way forward for the widespread practical use of inverse design.</description><subject>foundry fabrication</subject><subject>inverse design</subject><subject>MATERIALS SCIENCE</subject><subject>nanophotonics</subject><subject>silicon photonics</subject><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEQDaJgqf0DD8X71kkmm90epVpbKCio55DNTmyK3ZRkK_j3prRCT57mPea9x8xj7JbDhIPg98am3Tr0ofM2TaYN8FLCBRsIRCgkCHF5hq_ZKKUNAHAoUSk5YGrZfVNMVDxS8p8dtePXv7CxC3H8RltvQ9fubZ_ZPOy7NnpKN-zKma9Eo9Mcso_50_tsUaxenpezh1VhUJV9UbfUcIFKEkINWLrGuFo0Du2BGGGgyrBypsImE0eAfCodKWxFhaXEIbs75obUe52s78mu8z0d2V5zhVirg0geRTaGlCI5vYt-a-KP5qAPHenzjvSpo2yDoy1v9SbsY5c_-d_yC-eBbf0</recordid><startdate>20200318</startdate><enddate>20200318</enddate><creator>Piggott, Alexander Y</creator><creator>Ma, Eric Y</creator><creator>Su, Logan</creator><creator>Ahn, Geun Ho</creator><creator>Sapra, Neil V</creator><creator>Vercruysse, Dries</creator><creator>Netherton, Andrew M</creator><creator>Khope, Akhilesh S. P</creator><creator>Bowers, John E</creator><creator>Vučković, Jelena</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0539-1501</orcidid><orcidid>https://orcid.org/0000-0002-4761-7804</orcidid><orcidid>https://orcid.org/0000-0002-4050-7338</orcidid><orcidid>https://orcid.org/0000000247617804</orcidid><orcidid>https://orcid.org/0000000205391501</orcidid><orcidid>https://orcid.org/0000000240507338</orcidid></search><sort><creationdate>20200318</creationdate><title>Inverse-Designed Photonics for Semiconductor Foundries</title><author>Piggott, Alexander Y ; Ma, Eric Y ; Su, Logan ; Ahn, Geun Ho ; Sapra, Neil V ; Vercruysse, Dries ; Netherton, Andrew M ; Khope, Akhilesh S. P ; Bowers, John E ; Vučković, Jelena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a365t-8deb12364e308035fbaf82bf3c035fa2a073c07fa73b2a0fe03194fe63d273543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>foundry fabrication</topic><topic>inverse design</topic><topic>MATERIALS SCIENCE</topic><topic>nanophotonics</topic><topic>silicon photonics</topic><toplevel>online_resources</toplevel><creatorcontrib>Piggott, Alexander Y</creatorcontrib><creatorcontrib>Ma, Eric Y</creatorcontrib><creatorcontrib>Su, Logan</creatorcontrib><creatorcontrib>Ahn, Geun Ho</creatorcontrib><creatorcontrib>Sapra, Neil V</creatorcontrib><creatorcontrib>Vercruysse, Dries</creatorcontrib><creatorcontrib>Netherton, Andrew M</creatorcontrib><creatorcontrib>Khope, Akhilesh S. P</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Vučković, Jelena</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piggott, Alexander Y</au><au>Ma, Eric Y</au><au>Su, Logan</au><au>Ahn, Geun Ho</au><au>Sapra, Neil V</au><au>Vercruysse, Dries</au><au>Netherton, Andrew M</au><au>Khope, Akhilesh S. P</au><au>Bowers, John E</au><au>Vučković, Jelena</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse-Designed Photonics for Semiconductor Foundries</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2020-03-18</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>569</spage><epage>575</epage><pages>569-575</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Silicon photonics is becoming a leading technology in photonics, displacing traditional fiber optic transceivers and enabling new applications. Further improving the density and performance of silicon photonics, however, has been challenging due to the large size and limited performance of traditional semianalytically designed components. Automated optimization of photonic devices using inverse design is a promising path forward but has, until now, faced difficulties in producing designs that can be fabricated reliably at scale. Here we experimentally demonstrate four inverse-designed devices made successfully in a commercial silicon photonics foundry: a spatial mode multiplexer, wavelength demultiplexer, 50–50 directional coupler, and 3-way power splitter. These devices are efficient, robust to fabrication variability, and compact, with footprints only a few micrometers across. They pave the way forward for the widespread practical use of inverse design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.9b01540</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0539-1501</orcidid><orcidid>https://orcid.org/0000-0002-4761-7804</orcidid><orcidid>https://orcid.org/0000-0002-4050-7338</orcidid><orcidid>https://orcid.org/0000000247617804</orcidid><orcidid>https://orcid.org/0000000205391501</orcidid><orcidid>https://orcid.org/0000000240507338</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-4022 |
ispartof | ACS photonics, 2020-03, Vol.7 (3), p.569-575 |
issn | 2330-4022 2330-4022 |
language | eng |
recordid | cdi_osti_scitechconnect_1633864 |
source | American Chemical Society Journals |
subjects | foundry fabrication inverse design MATERIALS SCIENCE nanophotonics silicon photonics |
title | Inverse-Designed Photonics for Semiconductor Foundries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse-Designed%20Photonics%20for%20Semiconductor%20Foundries&rft.jtitle=ACS%20photonics&rft.au=Piggott,%20Alexander%20Y&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-03-18&rft.volume=7&rft.issue=3&rft.spage=569&rft.epage=575&rft.pages=569-575&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.9b01540&rft_dat=%3Cacs_osti_%3Eb856411238%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |