Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet
We performed nonlinear optical two-dimensional Fourier transform spectroscopy measurements using an optical resistive high-field magnet on GaAs quantum wells. Magnetic fields up to 25 T can be achieved using the split helix resistive magnet. Two-dimensional spectroscopy measurements based on the coh...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2019-06, Vol.90 (6) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Review of scientific instruments |
container_volume | 90 |
creator | Paul, Jagannath Stevens, Christopher. E. Smith, Ryan P. Dey, Prasenjit Mapara, Varun Semenov, Dimitry McGill, Steven A. Kaindl, Robert A. Hilton, David J. Karaiskaj, Denis |
description | We performed nonlinear optical two-dimensional Fourier transform spectroscopy measurements using an optical resistive high-field magnet on GaAs quantum wells. Magnetic fields up to 25 T can be achieved using the split helix resistive magnet. Two-dimensional spectroscopy measurements based on the coherent four-wave mixing signal require phase stability. Therefore, these measurements are difficult to perform in environments prone to mechanical vibrations. Large resistive magnets use extensive quantities of cooling water, which causes mechanical vibrations, making two-dimensional Fourier transform spectroscopy very challenging. Here, we report on the strategies we used to overcome these challenges and maintain the required phase-stability throughout the measurement. A self-contained portable platform was used to set up the experiments within the time frame provided by a user facility. Furthermore, this platform was floated above the optical table in order to isolate it from vibrations originating from the resistive magnet. Finally, we present two-dimensional Fourier transform spectra obtained from GaAs quantum wells at magnetic fields up to 25 T and demonstrate the utility of this technique in providing important details, which are obscured in one dimensional spectroscopy. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1633234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1633234</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16332343</originalsourceid><addsrcrecordid>eNqNjEsOgjAUABujifi5w4t7EqD8XBOJB2DjyjT1ATXQR_qKxtvLwgM4m9lMZiWCOCrPYZEnci2CKJJpmBdpuRU75me0kMVxIG4V9ejQevBvCh9mRMuGrBqgptkZdOCdstySG4En1N4Ra5o-MLOxHShIMmiQBwUO2bA3L4RRdRb9QWxaNTAef96LU31pqmtIS3VnbTzqXpO1y_Qe51ImMpV_RV_XgEQS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Paul, Jagannath ; Stevens, Christopher. E. ; Smith, Ryan P. ; Dey, Prasenjit ; Mapara, Varun ; Semenov, Dimitry ; McGill, Steven A. ; Kaindl, Robert A. ; Hilton, David J. ; Karaiskaj, Denis</creator><creatorcontrib>Paul, Jagannath ; Stevens, Christopher. E. ; Smith, Ryan P. ; Dey, Prasenjit ; Mapara, Varun ; Semenov, Dimitry ; McGill, Steven A. ; Kaindl, Robert A. ; Hilton, David J. ; Karaiskaj, Denis ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We performed nonlinear optical two-dimensional Fourier transform spectroscopy measurements using an optical resistive high-field magnet on GaAs quantum wells. Magnetic fields up to 25 T can be achieved using the split helix resistive magnet. Two-dimensional spectroscopy measurements based on the coherent four-wave mixing signal require phase stability. Therefore, these measurements are difficult to perform in environments prone to mechanical vibrations. Large resistive magnets use extensive quantities of cooling water, which causes mechanical vibrations, making two-dimensional Fourier transform spectroscopy very challenging. Here, we report on the strategies we used to overcome these challenges and maintain the required phase-stability throughout the measurement. A self-contained portable platform was used to set up the experiments within the time frame provided by a user facility. Furthermore, this platform was floated above the optical table in order to isolate it from vibrations originating from the resistive magnet. Finally, we present two-dimensional Fourier transform spectra obtained from GaAs quantum wells at magnetic fields up to 25 T and demonstrate the utility of this technique in providing important details, which are obscured in one dimensional spectroscopy.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>OTHER INSTRUMENTATION</subject><ispartof>Review of scientific instruments, 2019-06, Vol.90 (6)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000336395625 ; 0000000188092082 ; 0000000163657155 ; 0000000231817545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1633234$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Jagannath</creatorcontrib><creatorcontrib>Stevens, Christopher. E.</creatorcontrib><creatorcontrib>Smith, Ryan P.</creatorcontrib><creatorcontrib>Dey, Prasenjit</creatorcontrib><creatorcontrib>Mapara, Varun</creatorcontrib><creatorcontrib>Semenov, Dimitry</creatorcontrib><creatorcontrib>McGill, Steven A.</creatorcontrib><creatorcontrib>Kaindl, Robert A.</creatorcontrib><creatorcontrib>Hilton, David J.</creatorcontrib><creatorcontrib>Karaiskaj, Denis</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet</title><title>Review of scientific instruments</title><description>We performed nonlinear optical two-dimensional Fourier transform spectroscopy measurements using an optical resistive high-field magnet on GaAs quantum wells. Magnetic fields up to 25 T can be achieved using the split helix resistive magnet. Two-dimensional spectroscopy measurements based on the coherent four-wave mixing signal require phase stability. Therefore, these measurements are difficult to perform in environments prone to mechanical vibrations. Large resistive magnets use extensive quantities of cooling water, which causes mechanical vibrations, making two-dimensional Fourier transform spectroscopy very challenging. Here, we report on the strategies we used to overcome these challenges and maintain the required phase-stability throughout the measurement. A self-contained portable platform was used to set up the experiments within the time frame provided by a user facility. Furthermore, this platform was floated above the optical table in order to isolate it from vibrations originating from the resistive magnet. Finally, we present two-dimensional Fourier transform spectra obtained from GaAs quantum wells at magnetic fields up to 25 T and demonstrate the utility of this technique in providing important details, which are obscured in one dimensional spectroscopy.</description><subject>OTHER INSTRUMENTATION</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNjEsOgjAUABujifi5w4t7EqD8XBOJB2DjyjT1ATXQR_qKxtvLwgM4m9lMZiWCOCrPYZEnci2CKJJpmBdpuRU75me0kMVxIG4V9ejQevBvCh9mRMuGrBqgptkZdOCdstySG4En1N4Ra5o-MLOxHShIMmiQBwUO2bA3L4RRdRb9QWxaNTAef96LU31pqmtIS3VnbTzqXpO1y_Qe51ImMpV_RV_XgEQS</recordid><startdate>20190604</startdate><enddate>20190604</enddate><creator>Paul, Jagannath</creator><creator>Stevens, Christopher. E.</creator><creator>Smith, Ryan P.</creator><creator>Dey, Prasenjit</creator><creator>Mapara, Varun</creator><creator>Semenov, Dimitry</creator><creator>McGill, Steven A.</creator><creator>Kaindl, Robert A.</creator><creator>Hilton, David J.</creator><creator>Karaiskaj, Denis</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000336395625</orcidid><orcidid>https://orcid.org/0000000188092082</orcidid><orcidid>https://orcid.org/0000000163657155</orcidid><orcidid>https://orcid.org/0000000231817545</orcidid></search><sort><creationdate>20190604</creationdate><title>Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet</title><author>Paul, Jagannath ; Stevens, Christopher. E. ; Smith, Ryan P. ; Dey, Prasenjit ; Mapara, Varun ; Semenov, Dimitry ; McGill, Steven A. ; Kaindl, Robert A. ; Hilton, David J. ; Karaiskaj, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16332343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>OTHER INSTRUMENTATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Jagannath</creatorcontrib><creatorcontrib>Stevens, Christopher. E.</creatorcontrib><creatorcontrib>Smith, Ryan P.</creatorcontrib><creatorcontrib>Dey, Prasenjit</creatorcontrib><creatorcontrib>Mapara, Varun</creatorcontrib><creatorcontrib>Semenov, Dimitry</creatorcontrib><creatorcontrib>McGill, Steven A.</creatorcontrib><creatorcontrib>Kaindl, Robert A.</creatorcontrib><creatorcontrib>Hilton, David J.</creatorcontrib><creatorcontrib>Karaiskaj, Denis</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Jagannath</au><au>Stevens, Christopher. E.</au><au>Smith, Ryan P.</au><au>Dey, Prasenjit</au><au>Mapara, Varun</au><au>Semenov, Dimitry</au><au>McGill, Steven A.</au><au>Kaindl, Robert A.</au><au>Hilton, David J.</au><au>Karaiskaj, Denis</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet</atitle><jtitle>Review of scientific instruments</jtitle><date>2019-06-04</date><risdate>2019</risdate><volume>90</volume><issue>6</issue><issn>0034-6748</issn><eissn>1089-7623</eissn><abstract>We performed nonlinear optical two-dimensional Fourier transform spectroscopy measurements using an optical resistive high-field magnet on GaAs quantum wells. Magnetic fields up to 25 T can be achieved using the split helix resistive magnet. Two-dimensional spectroscopy measurements based on the coherent four-wave mixing signal require phase stability. Therefore, these measurements are difficult to perform in environments prone to mechanical vibrations. Large resistive magnets use extensive quantities of cooling water, which causes mechanical vibrations, making two-dimensional Fourier transform spectroscopy very challenging. Here, we report on the strategies we used to overcome these challenges and maintain the required phase-stability throughout the measurement. A self-contained portable platform was used to set up the experiments within the time frame provided by a user facility. Furthermore, this platform was floated above the optical table in order to isolate it from vibrations originating from the resistive magnet. Finally, we present two-dimensional Fourier transform spectra obtained from GaAs quantum wells at magnetic fields up to 25 T and demonstrate the utility of this technique in providing important details, which are obscured in one dimensional spectroscopy.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><orcidid>https://orcid.org/0000000336395625</orcidid><orcidid>https://orcid.org/0000000188092082</orcidid><orcidid>https://orcid.org/0000000163657155</orcidid><orcidid>https://orcid.org/0000000231817545</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2019-06, Vol.90 (6) |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_osti_scitechconnect_1633234 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | OTHER INSTRUMENTATION |
title | Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T12%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20two-dimensional%20Fourier%20transform%20spectroscopy%20using%20a%2025%20Tesla%20resistive%20magnet&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Paul,%20Jagannath&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-06-04&rft.volume=90&rft.issue=6&rft.issn=0034-6748&rft.eissn=1089-7623&rft_id=info:doi/&rft_dat=%3Costi%3E1633234%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |