The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides
In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use i...
Gespeichert in:
Veröffentlicht in: | Nature materials 2020-10, Vol.19 (10), p.1088-1095 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1095 |
---|---|
container_issue | 10 |
container_start_page | 1088 |
container_title | Nature materials |
container_volume | 19 |
creator | Bianchini, Matteo Wang, Jingyang Clément, Raphaële J. Ouyang, Bin Xiao, Penghao Kitchaev, Daniil Shi, Tan Zhang, Yaqian Wang, Yan Kim, Haegyeom Zhang, Mingjian Bai, Jianming Wang, Feng Sun, Wenhao Ceder, Gerbrand |
description | In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na
0.67
MO
2
(M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3′ and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis.
Understanding the competition between thermodynamics and kinetics is crucial for the rational synthesis of inorganic materials. The synthesis of two-layer sodium metal oxides is investigated by in situ synchrotron XRD and a model is developed to rationalize why the observed phase progression proceeds through non-equilibrium three-layered intermediates. |
doi_str_mv | 10.1038/s41563-020-0688-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1633027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404640772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-60312b338fc4e879b042b032db1de2e1ce004f0c5da27a88fc1ec2d60736b9143</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiNERUvhB3BBFly4pIy_0yOq-JIq9VLOxrEnrEtiL7ZXZf99vWQBCYmTx55n3pH1dN0LChcU-PC2CCoV74FBD2oYevWoO6NCq14oBY-PNaWMnXZPS7kDYFRK9aQ75UwwwTU9677ebpCEWDFvZ7snI9Z7xEjqBvOS_D7aJbhCbPTke4hYD5fwq01KmoPvS7W11fvYnkooJE2k5WBGT9LP4LE8604mOxd8fjzPuy8f3t9efeqvbz5-vnp33TspZO0VcMpGzofJCRz05QiCjcCZH6lHhtQhgJjASW-ZtkPDKDrmFWiuxksq-Hn3as1NpQZTXKjoNi7FiK4aqjgHphv0ZoW2Of3YYalmCcXhPNuIaVcMEyCUAK1ZQ1__g96lXY7tC43SEqjUSjaKrpTLqZSMk9nmsNi8NxTMwZFZHZnmyBwcGdVmXh6Td-OC_s_EbykNYCtQWit-w_x39f9THwDqZ5u6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475015765</pqid></control><display><type>article</type><title>The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Bianchini, Matteo ; Wang, Jingyang ; Clément, Raphaële J. ; Ouyang, Bin ; Xiao, Penghao ; Kitchaev, Daniil ; Shi, Tan ; Zhang, Yaqian ; Wang, Yan ; Kim, Haegyeom ; Zhang, Mingjian ; Bai, Jianming ; Wang, Feng ; Sun, Wenhao ; Ceder, Gerbrand</creator><creatorcontrib>Bianchini, Matteo ; Wang, Jingyang ; Clément, Raphaële J. ; Ouyang, Bin ; Xiao, Penghao ; Kitchaev, Daniil ; Shi, Tan ; Zhang, Yaqian ; Wang, Yan ; Kim, Haegyeom ; Zhang, Mingjian ; Bai, Jianming ; Wang, Feng ; Sun, Wenhao ; Ceder, Gerbrand ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry ; Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) ; Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials Design (CNGMD) ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na
0.67
MO
2
(M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3′ and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis.
Understanding the competition between thermodynamics and kinetics is crucial for the rational synthesis of inorganic materials. The synthesis of two-layer sodium metal oxides is investigated by in situ synchrotron XRD and a model is developed to rationalize why the observed phase progression proceeds through non-equilibrium three-layered intermediates.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-0688-6</identifier><identifier>PMID: 32424371</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/638 ; 639/638/263 ; 639/638/263/915 ; 639/638/549 ; Batteries ; Biomaterials ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Competition ; Condensed Matter Physics ; Crystallization ; Inorganic chemistry ; Inorganic materials ; Kinetics ; MATERIALS SCIENCE ; Metal oxides ; Nanotechnology ; Optical and Electronic Materials ; Oxides ; Phase transitions ; Precursors ; Sodium ; Solid state ; Solid-state chemistry ; Synchrotron radiation ; Synchrotrons ; Thermodynamic equilibrium ; Thermodynamics ; X-ray diffraction</subject><ispartof>Nature materials, 2020-10, Vol.19 (10), p.1088-1095</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-60312b338fc4e879b042b032db1de2e1ce004f0c5da27a88fc1ec2d60736b9143</citedby><cites>FETCH-LOGICAL-c545t-60312b338fc4e879b042b032db1de2e1ce004f0c5da27a88fc1ec2d60736b9143</cites><orcidid>0000-0002-8416-455X ; 0000-0002-5962-8244 ; 0000-0003-4034-7706 ; 0000-0002-8648-2172 ; 0000-0001-9275-3605 ; 0000-0002-6843-5911 ; 0000-0003-4068-9212 ; 0000-0002-0575-2987 ; 000000028416455X ; 0000000286482172 ; 0000000340689212 ; 0000000205752987 ; 0000000192753605 ; 0000000259628244 ; 0000000268435911 ; 0000000340347706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32424371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1633027$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianchini, Matteo</creatorcontrib><creatorcontrib>Wang, Jingyang</creatorcontrib><creatorcontrib>Clément, Raphaële J.</creatorcontrib><creatorcontrib>Ouyang, Bin</creatorcontrib><creatorcontrib>Xiao, Penghao</creatorcontrib><creatorcontrib>Kitchaev, Daniil</creatorcontrib><creatorcontrib>Shi, Tan</creatorcontrib><creatorcontrib>Zhang, Yaqian</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Kim, Haegyeom</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Bai, Jianming</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Sun, Wenhao</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials Design (CNGMD)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na
0.67
MO
2
(M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3′ and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis.
Understanding the competition between thermodynamics and kinetics is crucial for the rational synthesis of inorganic materials. The synthesis of two-layer sodium metal oxides is investigated by in situ synchrotron XRD and a model is developed to rationalize why the observed phase progression proceeds through non-equilibrium three-layered intermediates.</description><subject>639/301/299/891</subject><subject>639/638</subject><subject>639/638/263</subject><subject>639/638/263/915</subject><subject>639/638/549</subject><subject>Batteries</subject><subject>Biomaterials</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Competition</subject><subject>Condensed Matter Physics</subject><subject>Crystallization</subject><subject>Inorganic chemistry</subject><subject>Inorganic materials</subject><subject>Kinetics</subject><subject>MATERIALS SCIENCE</subject><subject>Metal oxides</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxides</subject><subject>Phase transitions</subject><subject>Precursors</subject><subject>Sodium</subject><subject>Solid state</subject><subject>Solid-state chemistry</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><subject>X-ray diffraction</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1v1DAQhiNERUvhB3BBFly4pIy_0yOq-JIq9VLOxrEnrEtiL7ZXZf99vWQBCYmTx55n3pH1dN0LChcU-PC2CCoV74FBD2oYevWoO6NCq14oBY-PNaWMnXZPS7kDYFRK9aQ75UwwwTU9677ebpCEWDFvZ7snI9Z7xEjqBvOS_D7aJbhCbPTke4hYD5fwq01KmoPvS7W11fvYnkooJE2k5WBGT9LP4LE8604mOxd8fjzPuy8f3t9efeqvbz5-vnp33TspZO0VcMpGzofJCRz05QiCjcCZH6lHhtQhgJjASW-ZtkPDKDrmFWiuxksq-Hn3as1NpQZTXKjoNi7FiK4aqjgHphv0ZoW2Of3YYalmCcXhPNuIaVcMEyCUAK1ZQ1__g96lXY7tC43SEqjUSjaKrpTLqZSMk9nmsNi8NxTMwZFZHZnmyBwcGdVmXh6Td-OC_s_EbykNYCtQWit-w_x39f9THwDqZ5u6</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Bianchini, Matteo</creator><creator>Wang, Jingyang</creator><creator>Clément, Raphaële J.</creator><creator>Ouyang, Bin</creator><creator>Xiao, Penghao</creator><creator>Kitchaev, Daniil</creator><creator>Shi, Tan</creator><creator>Zhang, Yaqian</creator><creator>Wang, Yan</creator><creator>Kim, Haegyeom</creator><creator>Zhang, Mingjian</creator><creator>Bai, Jianming</creator><creator>Wang, Feng</creator><creator>Sun, Wenhao</creator><creator>Ceder, Gerbrand</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8416-455X</orcidid><orcidid>https://orcid.org/0000-0002-5962-8244</orcidid><orcidid>https://orcid.org/0000-0003-4034-7706</orcidid><orcidid>https://orcid.org/0000-0002-8648-2172</orcidid><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000-0002-6843-5911</orcidid><orcidid>https://orcid.org/0000-0003-4068-9212</orcidid><orcidid>https://orcid.org/0000-0002-0575-2987</orcidid><orcidid>https://orcid.org/000000028416455X</orcidid><orcidid>https://orcid.org/0000000286482172</orcidid><orcidid>https://orcid.org/0000000340689212</orcidid><orcidid>https://orcid.org/0000000205752987</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0000000259628244</orcidid><orcidid>https://orcid.org/0000000268435911</orcidid><orcidid>https://orcid.org/0000000340347706</orcidid></search><sort><creationdate>20201001</creationdate><title>The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides</title><author>Bianchini, Matteo ; Wang, Jingyang ; Clément, Raphaële J. ; Ouyang, Bin ; Xiao, Penghao ; Kitchaev, Daniil ; Shi, Tan ; Zhang, Yaqian ; Wang, Yan ; Kim, Haegyeom ; Zhang, Mingjian ; Bai, Jianming ; Wang, Feng ; Sun, Wenhao ; Ceder, Gerbrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-60312b338fc4e879b042b032db1de2e1ce004f0c5da27a88fc1ec2d60736b9143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/299/891</topic><topic>639/638</topic><topic>639/638/263</topic><topic>639/638/263/915</topic><topic>639/638/549</topic><topic>Batteries</topic><topic>Biomaterials</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Competition</topic><topic>Condensed Matter Physics</topic><topic>Crystallization</topic><topic>Inorganic chemistry</topic><topic>Inorganic materials</topic><topic>Kinetics</topic><topic>MATERIALS SCIENCE</topic><topic>Metal oxides</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxides</topic><topic>Phase transitions</topic><topic>Precursors</topic><topic>Sodium</topic><topic>Solid state</topic><topic>Solid-state chemistry</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchini, Matteo</creatorcontrib><creatorcontrib>Wang, Jingyang</creatorcontrib><creatorcontrib>Clément, Raphaële J.</creatorcontrib><creatorcontrib>Ouyang, Bin</creatorcontrib><creatorcontrib>Xiao, Penghao</creatorcontrib><creatorcontrib>Kitchaev, Daniil</creatorcontrib><creatorcontrib>Shi, Tan</creatorcontrib><creatorcontrib>Zhang, Yaqian</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Kim, Haegyeom</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Bai, Jianming</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Sun, Wenhao</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials Design (CNGMD)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchini, Matteo</au><au>Wang, Jingyang</au><au>Clément, Raphaële J.</au><au>Ouyang, Bin</au><au>Xiao, Penghao</au><au>Kitchaev, Daniil</au><au>Shi, Tan</au><au>Zhang, Yaqian</au><au>Wang, Yan</au><au>Kim, Haegyeom</au><au>Zhang, Mingjian</au><au>Bai, Jianming</au><au>Wang, Feng</au><au>Sun, Wenhao</au><au>Ceder, Gerbrand</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials Design (CNGMD)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>19</volume><issue>10</issue><spage>1088</spage><epage>1095</epage><pages>1088-1095</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na
0.67
MO
2
(M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3′ and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis.
Understanding the competition between thermodynamics and kinetics is crucial for the rational synthesis of inorganic materials. The synthesis of two-layer sodium metal oxides is investigated by in situ synchrotron XRD and a model is developed to rationalize why the observed phase progression proceeds through non-equilibrium three-layered intermediates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32424371</pmid><doi>10.1038/s41563-020-0688-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8416-455X</orcidid><orcidid>https://orcid.org/0000-0002-5962-8244</orcidid><orcidid>https://orcid.org/0000-0003-4034-7706</orcidid><orcidid>https://orcid.org/0000-0002-8648-2172</orcidid><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000-0002-6843-5911</orcidid><orcidid>https://orcid.org/0000-0003-4068-9212</orcidid><orcidid>https://orcid.org/0000-0002-0575-2987</orcidid><orcidid>https://orcid.org/000000028416455X</orcidid><orcidid>https://orcid.org/0000000286482172</orcidid><orcidid>https://orcid.org/0000000340689212</orcidid><orcidid>https://orcid.org/0000000205752987</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0000000259628244</orcidid><orcidid>https://orcid.org/0000000268435911</orcidid><orcidid>https://orcid.org/0000000340347706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2020-10, Vol.19 (10), p.1088-1095 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_osti_scitechconnect_1633027 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/301/299/891 639/638 639/638/263 639/638/263/915 639/638/549 Batteries Biomaterials Chemical synthesis Chemistry Chemistry and Materials Science Competition Condensed Matter Physics Crystallization Inorganic chemistry Inorganic materials Kinetics MATERIALS SCIENCE Metal oxides Nanotechnology Optical and Electronic Materials Oxides Phase transitions Precursors Sodium Solid state Solid-state chemistry Synchrotron radiation Synchrotrons Thermodynamic equilibrium Thermodynamics X-ray diffraction |
title | The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20interplay%20between%20thermodynamics%20and%20kinetics%20in%20the%20solid-state%20synthesis%20of%20layered%20oxides&rft.jtitle=Nature%20materials&rft.au=Bianchini,%20Matteo&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Molecular%20Foundry&rft.date=2020-10-01&rft.volume=19&rft.issue=10&rft.spage=1088&rft.epage=1095&rft.pages=1088-1095&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-0688-6&rft_dat=%3Cproquest_osti_%3E2404640772%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475015765&rft_id=info:pmid/32424371&rfr_iscdi=true |