The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides

In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2020-10, Vol.19 (10), p.1088-1095
Hauptverfasser: Bianchini, Matteo, Wang, Jingyang, Clément, Raphaële J., Ouyang, Bin, Xiao, Penghao, Kitchaev, Daniil, Shi, Tan, Zhang, Yaqian, Wang, Yan, Kim, Haegyeom, Zhang, Mingjian, Bai, Jianming, Wang, Feng, Sun, Wenhao, Ceder, Gerbrand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1095
container_issue 10
container_start_page 1088
container_title Nature materials
container_volume 19
creator Bianchini, Matteo
Wang, Jingyang
Clément, Raphaële J.
Ouyang, Bin
Xiao, Penghao
Kitchaev, Daniil
Shi, Tan
Zhang, Yaqian
Wang, Yan
Kim, Haegyeom
Zhang, Mingjian
Bai, Jianming
Wang, Feng
Sun, Wenhao
Ceder, Gerbrand
description In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na 0.67 MO 2 (M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3′ and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis. Understanding the competition between thermodynamics and kinetics is crucial for the rational synthesis of inorganic materials. The synthesis of two-layer sodium metal oxides is investigated by in situ synchrotron XRD and a model is developed to rationalize why the observed phase progression proceeds through non-equilibrium three-layered intermediates.
doi_str_mv 10.1038/s41563-020-0688-6
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1633027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404640772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-60312b338fc4e879b042b032db1de2e1ce004f0c5da27a88fc1ec2d60736b9143</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiNERUvhB3BBFly4pIy_0yOq-JIq9VLOxrEnrEtiL7ZXZf99vWQBCYmTx55n3pH1dN0LChcU-PC2CCoV74FBD2oYevWoO6NCq14oBY-PNaWMnXZPS7kDYFRK9aQ75UwwwTU9677ebpCEWDFvZ7snI9Z7xEjqBvOS_D7aJbhCbPTke4hYD5fwq01KmoPvS7W11fvYnkooJE2k5WBGT9LP4LE8604mOxd8fjzPuy8f3t9efeqvbz5-vnp33TspZO0VcMpGzofJCRz05QiCjcCZH6lHhtQhgJjASW-ZtkPDKDrmFWiuxksq-Hn3as1NpQZTXKjoNi7FiK4aqjgHphv0ZoW2Of3YYalmCcXhPNuIaVcMEyCUAK1ZQ1__g96lXY7tC43SEqjUSjaKrpTLqZSMk9nmsNi8NxTMwZFZHZnmyBwcGdVmXh6Td-OC_s_EbykNYCtQWit-w_x39f9THwDqZ5u6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475015765</pqid></control><display><type>article</type><title>The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Bianchini, Matteo ; Wang, Jingyang ; Clément, Raphaële J. ; Ouyang, Bin ; Xiao, Penghao ; Kitchaev, Daniil ; Shi, Tan ; Zhang, Yaqian ; Wang, Yan ; Kim, Haegyeom ; Zhang, Mingjian ; Bai, Jianming ; Wang, Feng ; Sun, Wenhao ; Ceder, Gerbrand</creator><creatorcontrib>Bianchini, Matteo ; Wang, Jingyang ; Clément, Raphaële J. ; Ouyang, Bin ; Xiao, Penghao ; Kitchaev, Daniil ; Shi, Tan ; Zhang, Yaqian ; Wang, Yan ; Kim, Haegyeom ; Zhang, Mingjian ; Bai, Jianming ; Wang, Feng ; Sun, Wenhao ; Ceder, Gerbrand ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry ; Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II) ; Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials Design (CNGMD) ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na 0.67 MO 2 (M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3′ and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis. Understanding the competition between thermodynamics and kinetics is crucial for the rational synthesis of inorganic materials. The synthesis of two-layer sodium metal oxides is investigated by in situ synchrotron XRD and a model is developed to rationalize why the observed phase progression proceeds through non-equilibrium three-layered intermediates.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-0688-6</identifier><identifier>PMID: 32424371</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/638 ; 639/638/263 ; 639/638/263/915 ; 639/638/549 ; Batteries ; Biomaterials ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Competition ; Condensed Matter Physics ; Crystallization ; Inorganic chemistry ; Inorganic materials ; Kinetics ; MATERIALS SCIENCE ; Metal oxides ; Nanotechnology ; Optical and Electronic Materials ; Oxides ; Phase transitions ; Precursors ; Sodium ; Solid state ; Solid-state chemistry ; Synchrotron radiation ; Synchrotrons ; Thermodynamic equilibrium ; Thermodynamics ; X-ray diffraction</subject><ispartof>Nature materials, 2020-10, Vol.19 (10), p.1088-1095</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-60312b338fc4e879b042b032db1de2e1ce004f0c5da27a88fc1ec2d60736b9143</citedby><cites>FETCH-LOGICAL-c545t-60312b338fc4e879b042b032db1de2e1ce004f0c5da27a88fc1ec2d60736b9143</cites><orcidid>0000-0002-8416-455X ; 0000-0002-5962-8244 ; 0000-0003-4034-7706 ; 0000-0002-8648-2172 ; 0000-0001-9275-3605 ; 0000-0002-6843-5911 ; 0000-0003-4068-9212 ; 0000-0002-0575-2987 ; 000000028416455X ; 0000000286482172 ; 0000000340689212 ; 0000000205752987 ; 0000000192753605 ; 0000000259628244 ; 0000000268435911 ; 0000000340347706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32424371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1633027$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bianchini, Matteo</creatorcontrib><creatorcontrib>Wang, Jingyang</creatorcontrib><creatorcontrib>Clément, Raphaële J.</creatorcontrib><creatorcontrib>Ouyang, Bin</creatorcontrib><creatorcontrib>Xiao, Penghao</creatorcontrib><creatorcontrib>Kitchaev, Daniil</creatorcontrib><creatorcontrib>Shi, Tan</creatorcontrib><creatorcontrib>Zhang, Yaqian</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Kim, Haegyeom</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Bai, Jianming</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Sun, Wenhao</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials Design (CNGMD)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na 0.67 MO 2 (M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3′ and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis. Understanding the competition between thermodynamics and kinetics is crucial for the rational synthesis of inorganic materials. The synthesis of two-layer sodium metal oxides is investigated by in situ synchrotron XRD and a model is developed to rationalize why the observed phase progression proceeds through non-equilibrium three-layered intermediates.</description><subject>639/301/299/891</subject><subject>639/638</subject><subject>639/638/263</subject><subject>639/638/263/915</subject><subject>639/638/549</subject><subject>Batteries</subject><subject>Biomaterials</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Competition</subject><subject>Condensed Matter Physics</subject><subject>Crystallization</subject><subject>Inorganic chemistry</subject><subject>Inorganic materials</subject><subject>Kinetics</subject><subject>MATERIALS SCIENCE</subject><subject>Metal oxides</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxides</subject><subject>Phase transitions</subject><subject>Precursors</subject><subject>Sodium</subject><subject>Solid state</subject><subject>Solid-state chemistry</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><subject>X-ray diffraction</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1v1DAQhiNERUvhB3BBFly4pIy_0yOq-JIq9VLOxrEnrEtiL7ZXZf99vWQBCYmTx55n3pH1dN0LChcU-PC2CCoV74FBD2oYevWoO6NCq14oBY-PNaWMnXZPS7kDYFRK9aQ75UwwwTU9677ebpCEWDFvZ7snI9Z7xEjqBvOS_D7aJbhCbPTke4hYD5fwq01KmoPvS7W11fvYnkooJE2k5WBGT9LP4LE8604mOxd8fjzPuy8f3t9efeqvbz5-vnp33TspZO0VcMpGzofJCRz05QiCjcCZH6lHhtQhgJjASW-ZtkPDKDrmFWiuxksq-Hn3as1NpQZTXKjoNi7FiK4aqjgHphv0ZoW2Of3YYalmCcXhPNuIaVcMEyCUAK1ZQ1__g96lXY7tC43SEqjUSjaKrpTLqZSMk9nmsNi8NxTMwZFZHZnmyBwcGdVmXh6Td-OC_s_EbykNYCtQWit-w_x39f9THwDqZ5u6</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Bianchini, Matteo</creator><creator>Wang, Jingyang</creator><creator>Clément, Raphaële J.</creator><creator>Ouyang, Bin</creator><creator>Xiao, Penghao</creator><creator>Kitchaev, Daniil</creator><creator>Shi, Tan</creator><creator>Zhang, Yaqian</creator><creator>Wang, Yan</creator><creator>Kim, Haegyeom</creator><creator>Zhang, Mingjian</creator><creator>Bai, Jianming</creator><creator>Wang, Feng</creator><creator>Sun, Wenhao</creator><creator>Ceder, Gerbrand</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8416-455X</orcidid><orcidid>https://orcid.org/0000-0002-5962-8244</orcidid><orcidid>https://orcid.org/0000-0003-4034-7706</orcidid><orcidid>https://orcid.org/0000-0002-8648-2172</orcidid><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000-0002-6843-5911</orcidid><orcidid>https://orcid.org/0000-0003-4068-9212</orcidid><orcidid>https://orcid.org/0000-0002-0575-2987</orcidid><orcidid>https://orcid.org/000000028416455X</orcidid><orcidid>https://orcid.org/0000000286482172</orcidid><orcidid>https://orcid.org/0000000340689212</orcidid><orcidid>https://orcid.org/0000000205752987</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0000000259628244</orcidid><orcidid>https://orcid.org/0000000268435911</orcidid><orcidid>https://orcid.org/0000000340347706</orcidid></search><sort><creationdate>20201001</creationdate><title>The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides</title><author>Bianchini, Matteo ; Wang, Jingyang ; Clément, Raphaële J. ; Ouyang, Bin ; Xiao, Penghao ; Kitchaev, Daniil ; Shi, Tan ; Zhang, Yaqian ; Wang, Yan ; Kim, Haegyeom ; Zhang, Mingjian ; Bai, Jianming ; Wang, Feng ; Sun, Wenhao ; Ceder, Gerbrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-60312b338fc4e879b042b032db1de2e1ce004f0c5da27a88fc1ec2d60736b9143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/299/891</topic><topic>639/638</topic><topic>639/638/263</topic><topic>639/638/263/915</topic><topic>639/638/549</topic><topic>Batteries</topic><topic>Biomaterials</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Competition</topic><topic>Condensed Matter Physics</topic><topic>Crystallization</topic><topic>Inorganic chemistry</topic><topic>Inorganic materials</topic><topic>Kinetics</topic><topic>MATERIALS SCIENCE</topic><topic>Metal oxides</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxides</topic><topic>Phase transitions</topic><topic>Precursors</topic><topic>Sodium</topic><topic>Solid state</topic><topic>Solid-state chemistry</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bianchini, Matteo</creatorcontrib><creatorcontrib>Wang, Jingyang</creatorcontrib><creatorcontrib>Clément, Raphaële J.</creatorcontrib><creatorcontrib>Ouyang, Bin</creatorcontrib><creatorcontrib>Xiao, Penghao</creatorcontrib><creatorcontrib>Kitchaev, Daniil</creatorcontrib><creatorcontrib>Shi, Tan</creatorcontrib><creatorcontrib>Zhang, Yaqian</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Kim, Haegyeom</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Bai, Jianming</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Sun, Wenhao</creatorcontrib><creatorcontrib>Ceder, Gerbrand</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials Design (CNGMD)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bianchini, Matteo</au><au>Wang, Jingyang</au><au>Clément, Raphaële J.</au><au>Ouyang, Bin</au><au>Xiao, Penghao</au><au>Kitchaev, Daniil</au><au>Shi, Tan</au><au>Zhang, Yaqian</au><au>Wang, Yan</au><au>Kim, Haegyeom</au><au>Zhang, Mingjian</au><au>Bai, Jianming</au><au>Wang, Feng</au><au>Sun, Wenhao</au><au>Ceder, Gerbrand</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials Design (CNGMD)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>19</volume><issue>10</issue><spage>1088</spage><epage>1095</epage><pages>1088-1095</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na 0.67 MO 2 (M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3′ and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis. Understanding the competition between thermodynamics and kinetics is crucial for the rational synthesis of inorganic materials. The synthesis of two-layer sodium metal oxides is investigated by in situ synchrotron XRD and a model is developed to rationalize why the observed phase progression proceeds through non-equilibrium three-layered intermediates.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32424371</pmid><doi>10.1038/s41563-020-0688-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8416-455X</orcidid><orcidid>https://orcid.org/0000-0002-5962-8244</orcidid><orcidid>https://orcid.org/0000-0003-4034-7706</orcidid><orcidid>https://orcid.org/0000-0002-8648-2172</orcidid><orcidid>https://orcid.org/0000-0001-9275-3605</orcidid><orcidid>https://orcid.org/0000-0002-6843-5911</orcidid><orcidid>https://orcid.org/0000-0003-4068-9212</orcidid><orcidid>https://orcid.org/0000-0002-0575-2987</orcidid><orcidid>https://orcid.org/000000028416455X</orcidid><orcidid>https://orcid.org/0000000286482172</orcidid><orcidid>https://orcid.org/0000000340689212</orcidid><orcidid>https://orcid.org/0000000205752987</orcidid><orcidid>https://orcid.org/0000000192753605</orcidid><orcidid>https://orcid.org/0000000259628244</orcidid><orcidid>https://orcid.org/0000000268435911</orcidid><orcidid>https://orcid.org/0000000340347706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2020-10, Vol.19 (10), p.1088-1095
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_1633027
source Nature; Alma/SFX Local Collection
subjects 639/301/299/891
639/638
639/638/263
639/638/263/915
639/638/549
Batteries
Biomaterials
Chemical synthesis
Chemistry
Chemistry and Materials Science
Competition
Condensed Matter Physics
Crystallization
Inorganic chemistry
Inorganic materials
Kinetics
MATERIALS SCIENCE
Metal oxides
Nanotechnology
Optical and Electronic Materials
Oxides
Phase transitions
Precursors
Sodium
Solid state
Solid-state chemistry
Synchrotron radiation
Synchrotrons
Thermodynamic equilibrium
Thermodynamics
X-ray diffraction
title The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20interplay%20between%20thermodynamics%20and%20kinetics%20in%20the%20solid-state%20synthesis%20of%20layered%20oxides&rft.jtitle=Nature%20materials&rft.au=Bianchini,%20Matteo&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Molecular%20Foundry&rft.date=2020-10-01&rft.volume=19&rft.issue=10&rft.spage=1088&rft.epage=1095&rft.pages=1088-1095&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-0688-6&rft_dat=%3Cproquest_osti_%3E2404640772%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475015765&rft_id=info:pmid/32424371&rfr_iscdi=true