Deep‐Learning‐Enabled Fast Optical Identification and Characterization of 2D Materials

Advanced microscopy and/or spectroscopy tools play indispensable roles in nanoscience and nanotechnology research, as they provide rich information about material processes and properties. However, the interpretation of imaging data heavily relies on the “intuition” of experienced researchers. As a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-07, Vol.32 (29), p.e2000953-n/a
Hauptverfasser: Han, Bingnan, Lin, Yuxuan, Yang, Yafang, Mao, Nannan, Li, Wenyue, Wang, Haozhe, Yasuda, Kenji, Wang, Xirui, Fatemi, Valla, Zhou, Lin, Wang, Joel I.‐Jan, Ma, Qiong, Cao, Yuan, Rodan‐Legrain, Daniel, Bie, Ya‐Qing, Navarro‐Moratalla, Efrén, Klein, Dahlia, MacNeill, David, Wu, Sanfeng, Kitadai, Hikari, Ling, Xi, Jarillo‐Herrero, Pablo, Kong, Jing, Yin, Jihao, Palacios, Tomás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page e2000953
container_title Advanced materials (Weinheim)
container_volume 32
creator Han, Bingnan
Lin, Yuxuan
Yang, Yafang
Mao, Nannan
Li, Wenyue
Wang, Haozhe
Yasuda, Kenji
Wang, Xirui
Fatemi, Valla
Zhou, Lin
Wang, Joel I.‐Jan
Ma, Qiong
Cao, Yuan
Rodan‐Legrain, Daniel
Bie, Ya‐Qing
Navarro‐Moratalla, Efrén
Klein, Dahlia
MacNeill, David
Wu, Sanfeng
Kitadai, Hikari
Ling, Xi
Jarillo‐Herrero, Pablo
Kong, Jing
Yin, Jihao
Palacios, Tomás
description Advanced microscopy and/or spectroscopy tools play indispensable roles in nanoscience and nanotechnology research, as they provide rich information about material processes and properties. However, the interpretation of imaging data heavily relies on the “intuition” of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations. Such challenges can be well addressed by deep learning. In this work, the optical characterization of 2D materials is used as a case study, and a neural‐network‐based algorithm is demonstrated for the material and thickness identification of 2D materials with high prediction accuracy and real‐time processing capability. Further analysis shows that the trained network can extract deep graphical features such as contrast, color, edges, shapes, flake sizes, and their distributions, based on which an ensemble approach is developed to predict the most relevant physical properties of 2D materials. Finally, a transfer learning technique is applied to adapt the pretrained network to other optical identification applications. This artificial‐intelligence‐based material characterization approach is a powerful tool that would speed up the preparation, initial characterization of 2D materials and other nanomaterials, and potentially accelerate new material discoveries. Microscopy data of nanomaterials often contains rich yet complicated information that reflects the material properties, but is mostly overlooked by researchers. Deep learning is an ideal approach to finding these highly correlated and non‐linear features. As a case study, a neural network model called “2DMOINet” is trained for optical identification and characterization of exfoliated 2D materials.
doi_str_mv 10.1002/adma.202000953
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1632775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425518421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4433-59b21b9bf3f9fe574a28202a5a8a77ae080d04980db606b938aaf00386ebedc53</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhi3USmxpr5wjeukliz_iJD6udqEgLdoLXHqxJs6ENco6W9urip76E_iN_BIcBVGJC5f50vOOZvQScsronFHKz6HdwZxTTilVUhyRGZOc5UVqPpEZVULmqizqY_IlhIeRKWk5I79WiPvnf09rBO-su0_lhYOmxza7hBCzzT5aA3123aKLtkt1tIPLwLXZcgseTERv_07Docv4KruBcQR9-Eo-dynht9d8Qu4uL26XV_l68_N6uVjnpiiEyKVqOGtU04lOdSirAnidvgAJNVQVIK1pSwuVYpMubpSoATpKRV1ig62R4oScTXuHEK0OxkY0WzM4hyZqVgpeVSP0Y4L2fvh9wBD1zgaDfQ8Oh0PQvGBMCibrMqHf36EPw8G79EKiuJSsLjhL1HyijB9C8Njpvbc78I-aUT36oUc_9JsfSaAmwR_b4-MHtF6sbhb_tS9vkI8k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425518421</pqid></control><display><type>article</type><title>Deep‐Learning‐Enabled Fast Optical Identification and Characterization of 2D Materials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Han, Bingnan ; Lin, Yuxuan ; Yang, Yafang ; Mao, Nannan ; Li, Wenyue ; Wang, Haozhe ; Yasuda, Kenji ; Wang, Xirui ; Fatemi, Valla ; Zhou, Lin ; Wang, Joel I.‐Jan ; Ma, Qiong ; Cao, Yuan ; Rodan‐Legrain, Daniel ; Bie, Ya‐Qing ; Navarro‐Moratalla, Efrén ; Klein, Dahlia ; MacNeill, David ; Wu, Sanfeng ; Kitadai, Hikari ; Ling, Xi ; Jarillo‐Herrero, Pablo ; Kong, Jing ; Yin, Jihao ; Palacios, Tomás</creator><creatorcontrib>Han, Bingnan ; Lin, Yuxuan ; Yang, Yafang ; Mao, Nannan ; Li, Wenyue ; Wang, Haozhe ; Yasuda, Kenji ; Wang, Xirui ; Fatemi, Valla ; Zhou, Lin ; Wang, Joel I.‐Jan ; Ma, Qiong ; Cao, Yuan ; Rodan‐Legrain, Daniel ; Bie, Ya‐Qing ; Navarro‐Moratalla, Efrén ; Klein, Dahlia ; MacNeill, David ; Wu, Sanfeng ; Kitadai, Hikari ; Ling, Xi ; Jarillo‐Herrero, Pablo ; Kong, Jing ; Yin, Jihao ; Palacios, Tomás</creatorcontrib><description>Advanced microscopy and/or spectroscopy tools play indispensable roles in nanoscience and nanotechnology research, as they provide rich information about material processes and properties. However, the interpretation of imaging data heavily relies on the “intuition” of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations. Such challenges can be well addressed by deep learning. In this work, the optical characterization of 2D materials is used as a case study, and a neural‐network‐based algorithm is demonstrated for the material and thickness identification of 2D materials with high prediction accuracy and real‐time processing capability. Further analysis shows that the trained network can extract deep graphical features such as contrast, color, edges, shapes, flake sizes, and their distributions, based on which an ensemble approach is developed to predict the most relevant physical properties of 2D materials. Finally, a transfer learning technique is applied to adapt the pretrained network to other optical identification applications. This artificial‐intelligence‐based material characterization approach is a powerful tool that would speed up the preparation, initial characterization of 2D materials and other nanomaterials, and potentially accelerate new material discoveries. Microscopy data of nanomaterials often contains rich yet complicated information that reflects the material properties, but is mostly overlooked by researchers. Deep learning is an ideal approach to finding these highly correlated and non‐linear features. As a case study, a neural network model called “2DMOINet” is trained for optical identification and characterization of exfoliated 2D materials.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202000953</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Algorithms ; Deep learning ; Feature extraction ; machine learning ; material characterization ; Nanomaterials ; Nanotechnology ; optical microscopy ; Optical properties ; Physical properties ; Two dimensional materials</subject><ispartof>Advanced materials (Weinheim), 2020-07, Vol.32 (29), p.e2000953-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4433-59b21b9bf3f9fe574a28202a5a8a77ae080d04980db606b938aaf00386ebedc53</citedby><cites>FETCH-LOGICAL-c4433-59b21b9bf3f9fe574a28202a5a8a77ae080d04980db606b938aaf00386ebedc53</cites><orcidid>0000-0002-2190-563X ; 0000-0003-0638-2620 ; 0000000306382620 ; 000000022190563X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202000953$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202000953$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1632775$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Bingnan</creatorcontrib><creatorcontrib>Lin, Yuxuan</creatorcontrib><creatorcontrib>Yang, Yafang</creatorcontrib><creatorcontrib>Mao, Nannan</creatorcontrib><creatorcontrib>Li, Wenyue</creatorcontrib><creatorcontrib>Wang, Haozhe</creatorcontrib><creatorcontrib>Yasuda, Kenji</creatorcontrib><creatorcontrib>Wang, Xirui</creatorcontrib><creatorcontrib>Fatemi, Valla</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Wang, Joel I.‐Jan</creatorcontrib><creatorcontrib>Ma, Qiong</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Rodan‐Legrain, Daniel</creatorcontrib><creatorcontrib>Bie, Ya‐Qing</creatorcontrib><creatorcontrib>Navarro‐Moratalla, Efrén</creatorcontrib><creatorcontrib>Klein, Dahlia</creatorcontrib><creatorcontrib>MacNeill, David</creatorcontrib><creatorcontrib>Wu, Sanfeng</creatorcontrib><creatorcontrib>Kitadai, Hikari</creatorcontrib><creatorcontrib>Ling, Xi</creatorcontrib><creatorcontrib>Jarillo‐Herrero, Pablo</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Yin, Jihao</creatorcontrib><creatorcontrib>Palacios, Tomás</creatorcontrib><title>Deep‐Learning‐Enabled Fast Optical Identification and Characterization of 2D Materials</title><title>Advanced materials (Weinheim)</title><description>Advanced microscopy and/or spectroscopy tools play indispensable roles in nanoscience and nanotechnology research, as they provide rich information about material processes and properties. However, the interpretation of imaging data heavily relies on the “intuition” of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations. Such challenges can be well addressed by deep learning. In this work, the optical characterization of 2D materials is used as a case study, and a neural‐network‐based algorithm is demonstrated for the material and thickness identification of 2D materials with high prediction accuracy and real‐time processing capability. Further analysis shows that the trained network can extract deep graphical features such as contrast, color, edges, shapes, flake sizes, and their distributions, based on which an ensemble approach is developed to predict the most relevant physical properties of 2D materials. Finally, a transfer learning technique is applied to adapt the pretrained network to other optical identification applications. This artificial‐intelligence‐based material characterization approach is a powerful tool that would speed up the preparation, initial characterization of 2D materials and other nanomaterials, and potentially accelerate new material discoveries. Microscopy data of nanomaterials often contains rich yet complicated information that reflects the material properties, but is mostly overlooked by researchers. Deep learning is an ideal approach to finding these highly correlated and non‐linear features. As a case study, a neural network model called “2DMOINet” is trained for optical identification and characterization of exfoliated 2D materials.</description><subject>2D materials</subject><subject>Algorithms</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>machine learning</subject><subject>material characterization</subject><subject>Nanomaterials</subject><subject>Nanotechnology</subject><subject>optical microscopy</subject><subject>Optical properties</subject><subject>Physical properties</subject><subject>Two dimensional materials</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P3DAQhi3USmxpr5wjeukliz_iJD6udqEgLdoLXHqxJs6ENco6W9urip76E_iN_BIcBVGJC5f50vOOZvQScsronFHKz6HdwZxTTilVUhyRGZOc5UVqPpEZVULmqizqY_IlhIeRKWk5I79WiPvnf09rBO-su0_lhYOmxza7hBCzzT5aA3123aKLtkt1tIPLwLXZcgseTERv_07Docv4KruBcQR9-Eo-dynht9d8Qu4uL26XV_l68_N6uVjnpiiEyKVqOGtU04lOdSirAnidvgAJNVQVIK1pSwuVYpMubpSoATpKRV1ig62R4oScTXuHEK0OxkY0WzM4hyZqVgpeVSP0Y4L2fvh9wBD1zgaDfQ8Oh0PQvGBMCibrMqHf36EPw8G79EKiuJSsLjhL1HyijB9C8Njpvbc78I-aUT36oUc_9JsfSaAmwR_b4-MHtF6sbhb_tS9vkI8k</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Han, Bingnan</creator><creator>Lin, Yuxuan</creator><creator>Yang, Yafang</creator><creator>Mao, Nannan</creator><creator>Li, Wenyue</creator><creator>Wang, Haozhe</creator><creator>Yasuda, Kenji</creator><creator>Wang, Xirui</creator><creator>Fatemi, Valla</creator><creator>Zhou, Lin</creator><creator>Wang, Joel I.‐Jan</creator><creator>Ma, Qiong</creator><creator>Cao, Yuan</creator><creator>Rodan‐Legrain, Daniel</creator><creator>Bie, Ya‐Qing</creator><creator>Navarro‐Moratalla, Efrén</creator><creator>Klein, Dahlia</creator><creator>MacNeill, David</creator><creator>Wu, Sanfeng</creator><creator>Kitadai, Hikari</creator><creator>Ling, Xi</creator><creator>Jarillo‐Herrero, Pablo</creator><creator>Kong, Jing</creator><creator>Yin, Jihao</creator><creator>Palacios, Tomás</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2190-563X</orcidid><orcidid>https://orcid.org/0000-0003-0638-2620</orcidid><orcidid>https://orcid.org/0000000306382620</orcidid><orcidid>https://orcid.org/000000022190563X</orcidid></search><sort><creationdate>20200701</creationdate><title>Deep‐Learning‐Enabled Fast Optical Identification and Characterization of 2D Materials</title><author>Han, Bingnan ; Lin, Yuxuan ; Yang, Yafang ; Mao, Nannan ; Li, Wenyue ; Wang, Haozhe ; Yasuda, Kenji ; Wang, Xirui ; Fatemi, Valla ; Zhou, Lin ; Wang, Joel I.‐Jan ; Ma, Qiong ; Cao, Yuan ; Rodan‐Legrain, Daniel ; Bie, Ya‐Qing ; Navarro‐Moratalla, Efrén ; Klein, Dahlia ; MacNeill, David ; Wu, Sanfeng ; Kitadai, Hikari ; Ling, Xi ; Jarillo‐Herrero, Pablo ; Kong, Jing ; Yin, Jihao ; Palacios, Tomás</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4433-59b21b9bf3f9fe574a28202a5a8a77ae080d04980db606b938aaf00386ebedc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D materials</topic><topic>Algorithms</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>machine learning</topic><topic>material characterization</topic><topic>Nanomaterials</topic><topic>Nanotechnology</topic><topic>optical microscopy</topic><topic>Optical properties</topic><topic>Physical properties</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Bingnan</creatorcontrib><creatorcontrib>Lin, Yuxuan</creatorcontrib><creatorcontrib>Yang, Yafang</creatorcontrib><creatorcontrib>Mao, Nannan</creatorcontrib><creatorcontrib>Li, Wenyue</creatorcontrib><creatorcontrib>Wang, Haozhe</creatorcontrib><creatorcontrib>Yasuda, Kenji</creatorcontrib><creatorcontrib>Wang, Xirui</creatorcontrib><creatorcontrib>Fatemi, Valla</creatorcontrib><creatorcontrib>Zhou, Lin</creatorcontrib><creatorcontrib>Wang, Joel I.‐Jan</creatorcontrib><creatorcontrib>Ma, Qiong</creatorcontrib><creatorcontrib>Cao, Yuan</creatorcontrib><creatorcontrib>Rodan‐Legrain, Daniel</creatorcontrib><creatorcontrib>Bie, Ya‐Qing</creatorcontrib><creatorcontrib>Navarro‐Moratalla, Efrén</creatorcontrib><creatorcontrib>Klein, Dahlia</creatorcontrib><creatorcontrib>MacNeill, David</creatorcontrib><creatorcontrib>Wu, Sanfeng</creatorcontrib><creatorcontrib>Kitadai, Hikari</creatorcontrib><creatorcontrib>Ling, Xi</creatorcontrib><creatorcontrib>Jarillo‐Herrero, Pablo</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Yin, Jihao</creatorcontrib><creatorcontrib>Palacios, Tomás</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Bingnan</au><au>Lin, Yuxuan</au><au>Yang, Yafang</au><au>Mao, Nannan</au><au>Li, Wenyue</au><au>Wang, Haozhe</au><au>Yasuda, Kenji</au><au>Wang, Xirui</au><au>Fatemi, Valla</au><au>Zhou, Lin</au><au>Wang, Joel I.‐Jan</au><au>Ma, Qiong</au><au>Cao, Yuan</au><au>Rodan‐Legrain, Daniel</au><au>Bie, Ya‐Qing</au><au>Navarro‐Moratalla, Efrén</au><au>Klein, Dahlia</au><au>MacNeill, David</au><au>Wu, Sanfeng</au><au>Kitadai, Hikari</au><au>Ling, Xi</au><au>Jarillo‐Herrero, Pablo</au><au>Kong, Jing</au><au>Yin, Jihao</au><au>Palacios, Tomás</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep‐Learning‐Enabled Fast Optical Identification and Characterization of 2D Materials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>32</volume><issue>29</issue><spage>e2000953</spage><epage>n/a</epage><pages>e2000953-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Advanced microscopy and/or spectroscopy tools play indispensable roles in nanoscience and nanotechnology research, as they provide rich information about material processes and properties. However, the interpretation of imaging data heavily relies on the “intuition” of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations. Such challenges can be well addressed by deep learning. In this work, the optical characterization of 2D materials is used as a case study, and a neural‐network‐based algorithm is demonstrated for the material and thickness identification of 2D materials with high prediction accuracy and real‐time processing capability. Further analysis shows that the trained network can extract deep graphical features such as contrast, color, edges, shapes, flake sizes, and their distributions, based on which an ensemble approach is developed to predict the most relevant physical properties of 2D materials. Finally, a transfer learning technique is applied to adapt the pretrained network to other optical identification applications. This artificial‐intelligence‐based material characterization approach is a powerful tool that would speed up the preparation, initial characterization of 2D materials and other nanomaterials, and potentially accelerate new material discoveries. Microscopy data of nanomaterials often contains rich yet complicated information that reflects the material properties, but is mostly overlooked by researchers. Deep learning is an ideal approach to finding these highly correlated and non‐linear features. As a case study, a neural network model called “2DMOINet” is trained for optical identification and characterization of exfoliated 2D materials.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202000953</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2190-563X</orcidid><orcidid>https://orcid.org/0000-0003-0638-2620</orcidid><orcidid>https://orcid.org/0000000306382620</orcidid><orcidid>https://orcid.org/000000022190563X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-07, Vol.32 (29), p.e2000953-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1632775
source Wiley Online Library Journals Frontfile Complete
subjects 2D materials
Algorithms
Deep learning
Feature extraction
machine learning
material characterization
Nanomaterials
Nanotechnology
optical microscopy
Optical properties
Physical properties
Two dimensional materials
title Deep‐Learning‐Enabled Fast Optical Identification and Characterization of 2D Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%E2%80%90Learning%E2%80%90Enabled%20Fast%20Optical%20Identification%20and%20Characterization%20of%202D%20Materials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Han,%20Bingnan&rft.date=2020-07-01&rft.volume=32&rft.issue=29&rft.spage=e2000953&rft.epage=n/a&rft.pages=e2000953-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202000953&rft_dat=%3Cproquest_osti_%3E2425518421%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425518421&rft_id=info:pmid/&rfr_iscdi=true