A Highly Efficient All‐Solid‐State Lithium/Electrolyte Interface Induced by an Energetic Reaction

The energetic chemical reaction between Zn(NO3)2 and Li is used to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte. This interlayer, composed of Zn, ZnLix alloy, Li3N, Li2O, and other species, possesses strong affinities with both Li metal and LLZTO and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2020-08, Vol.59 (33), p.14003-14008
Hauptverfasser: Zhong, Yiren, Xie, Yujun, Hwang, Sooyeon, Wang, Qian, Cha, Judy J., Su, Dong, Wang, Hailiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14008
container_issue 33
container_start_page 14003
container_title Angewandte Chemie (International ed.)
container_volume 59
creator Zhong, Yiren
Xie, Yujun
Hwang, Sooyeon
Wang, Qian
Cha, Judy J.
Su, Dong
Wang, Hailiang
description The energetic chemical reaction between Zn(NO3)2 and Li is used to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte. This interlayer, composed of Zn, ZnLix alloy, Li3N, Li2O, and other species, possesses strong affinities with both Li metal and LLZTO and affords highly efficient conductive pathways for Li+ transport through the interface. The unique structure and properties of the interlayer lead to Li metal anodes with longer cycle life, higher efficiency, and better safety compared to the current best Li metal electrodes operating in liquid electrolytes while retaining comparable capacity, rate, and overpotential. All‐solid‐state Li||Li cells can operate at very demanding current–capacity conditions of 4 mA cm−2–8 mAh cm−2. Thousands of hours of continuous cycling are achieved at Coulombic efficiency >99.5 % without dendrite formation or side reactions with the electrolyte. The energetic reaction between Li and Zn(NO3)2 is employed to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 electrolyte, enabling high capacity, fast charging–discharging rates, and small overpotentials matching the performance of liquid‐electrolyte Li metal electrodes, but with longer cycle life, higher efficiency, and better safety.
doi_str_mv 10.1002/anie.202004477
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1631927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430057414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4777-facd36611bcdc652be26bdaa88f37b37c9efdc38e13dded5b3a13cca4981fff33</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy0EomXhyhFFcOGSre1J4uS4qrZ0pRVI_Dlbjj3uuvI6JXaEcuMReMY-CY62FIkLpxmNvvk09o-Q14yuGaX8QgWHa045pVUlxBNyzmrOShACnua-AihFW7Mz8iLG28y3LW2ekzPgIKqqq88Jboprd3Pwc7G11mmHIRUb7-9__voyeGeWmlTCYu_SwU3Hi61HncbBz3m2CwlHq_TSmUmjKfq5UKHYBhxvMDldfEalkxvCS_LMKh_x1UNdkW9X26-X1-X-04fd5WZf6ny8KLPLQNMw1mujm5r3yJveKNW2FkQPQndojYYWGRiDpu5BMdBaVV3LrLUAK_L25B1icjJql1Af9BBCPlqyBljHRYben6C7cfg-YUzy6KJG71XAYYqSQ9dxqBu--N79g94O0xjyEySvgNJaVPmPV2R9ovQ4xDiilXejO6pxlozKJSW5pCQfU8oLbx60U39E84j_iSUD3Qn44TzO_9HJzcfd9q_8N9yJoIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430057414</pqid></control><display><type>article</type><title>A Highly Efficient All‐Solid‐State Lithium/Electrolyte Interface Induced by an Energetic Reaction</title><source>Wiley Online Library All Journals</source><creator>Zhong, Yiren ; Xie, Yujun ; Hwang, Sooyeon ; Wang, Qian ; Cha, Judy J. ; Su, Dong ; Wang, Hailiang</creator><creatorcontrib>Zhong, Yiren ; Xie, Yujun ; Hwang, Sooyeon ; Wang, Qian ; Cha, Judy J. ; Su, Dong ; Wang, Hailiang ; Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><description>The energetic chemical reaction between Zn(NO3)2 and Li is used to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte. This interlayer, composed of Zn, ZnLix alloy, Li3N, Li2O, and other species, possesses strong affinities with both Li metal and LLZTO and affords highly efficient conductive pathways for Li+ transport through the interface. The unique structure and properties of the interlayer lead to Li metal anodes with longer cycle life, higher efficiency, and better safety compared to the current best Li metal electrodes operating in liquid electrolytes while retaining comparable capacity, rate, and overpotential. All‐solid‐state Li||Li cells can operate at very demanding current–capacity conditions of 4 mA cm−2–8 mAh cm−2. Thousands of hours of continuous cycling are achieved at Coulombic efficiency &gt;99.5 % without dendrite formation or side reactions with the electrolyte. The energetic reaction between Li and Zn(NO3)2 is employed to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 electrolyte, enabling high capacity, fast charging–discharging rates, and small overpotentials matching the performance of liquid‐electrolyte Li metal electrodes, but with longer cycle life, higher efficiency, and better safety.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202004477</identifier><identifier>PMID: 32374495</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical reactions ; Dendritic structure ; electrode/electrolyte interface ; Electrolytes ; Electrolytic cells ; ENERGY STORAGE ; garnet electrolytes ; Interlayers ; Li metal anodes ; Lithium ; Lithium oxides ; Metals ; reaction-induced interlayers ; Side reactions ; solid-state batteries ; Zinc</subject><ispartof>Angewandte Chemie (International ed.), 2020-08, Vol.59 (33), p.14003-14008</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4777-facd36611bcdc652be26bdaa88f37b37c9efdc38e13dded5b3a13cca4981fff33</citedby><cites>FETCH-LOGICAL-c4777-facd36611bcdc652be26bdaa88f37b37c9efdc38e13dded5b3a13cca4981fff33</cites><orcidid>0000-0003-4409-2034 ; 0000000344092034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202004477$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202004477$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32374495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1631927$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Yiren</creatorcontrib><creatorcontrib>Xie, Yujun</creatorcontrib><creatorcontrib>Hwang, Sooyeon</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Cha, Judy J.</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><title>A Highly Efficient All‐Solid‐State Lithium/Electrolyte Interface Induced by an Energetic Reaction</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The energetic chemical reaction between Zn(NO3)2 and Li is used to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte. This interlayer, composed of Zn, ZnLix alloy, Li3N, Li2O, and other species, possesses strong affinities with both Li metal and LLZTO and affords highly efficient conductive pathways for Li+ transport through the interface. The unique structure and properties of the interlayer lead to Li metal anodes with longer cycle life, higher efficiency, and better safety compared to the current best Li metal electrodes operating in liquid electrolytes while retaining comparable capacity, rate, and overpotential. All‐solid‐state Li||Li cells can operate at very demanding current–capacity conditions of 4 mA cm−2–8 mAh cm−2. Thousands of hours of continuous cycling are achieved at Coulombic efficiency &gt;99.5 % without dendrite formation or side reactions with the electrolyte. The energetic reaction between Li and Zn(NO3)2 is employed to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 electrolyte, enabling high capacity, fast charging–discharging rates, and small overpotentials matching the performance of liquid‐electrolyte Li metal electrodes, but with longer cycle life, higher efficiency, and better safety.</description><subject>Chemical reactions</subject><subject>Dendritic structure</subject><subject>electrode/electrolyte interface</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>ENERGY STORAGE</subject><subject>garnet electrolytes</subject><subject>Interlayers</subject><subject>Li metal anodes</subject><subject>Lithium</subject><subject>Lithium oxides</subject><subject>Metals</subject><subject>reaction-induced interlayers</subject><subject>Side reactions</subject><subject>solid-state batteries</subject><subject>Zinc</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQhy0EomXhyhFFcOGSre1J4uS4qrZ0pRVI_Dlbjj3uuvI6JXaEcuMReMY-CY62FIkLpxmNvvk09o-Q14yuGaX8QgWHa045pVUlxBNyzmrOShACnua-AihFW7Mz8iLG28y3LW2ekzPgIKqqq88Jboprd3Pwc7G11mmHIRUb7-9__voyeGeWmlTCYu_SwU3Hi61HncbBz3m2CwlHq_TSmUmjKfq5UKHYBhxvMDldfEalkxvCS_LMKh_x1UNdkW9X26-X1-X-04fd5WZf6ny8KLPLQNMw1mujm5r3yJveKNW2FkQPQndojYYWGRiDpu5BMdBaVV3LrLUAK_L25B1icjJql1Af9BBCPlqyBljHRYben6C7cfg-YUzy6KJG71XAYYqSQ9dxqBu--N79g94O0xjyEySvgNJaVPmPV2R9ovQ4xDiilXejO6pxlozKJSW5pCQfU8oLbx60U39E84j_iSUD3Qn44TzO_9HJzcfd9q_8N9yJoIQ</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Zhong, Yiren</creator><creator>Xie, Yujun</creator><creator>Hwang, Sooyeon</creator><creator>Wang, Qian</creator><creator>Cha, Judy J.</creator><creator>Su, Dong</creator><creator>Wang, Hailiang</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><orcidid>https://orcid.org/0000000344092034</orcidid></search><sort><creationdate>20200810</creationdate><title>A Highly Efficient All‐Solid‐State Lithium/Electrolyte Interface Induced by an Energetic Reaction</title><author>Zhong, Yiren ; Xie, Yujun ; Hwang, Sooyeon ; Wang, Qian ; Cha, Judy J. ; Su, Dong ; Wang, Hailiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4777-facd36611bcdc652be26bdaa88f37b37c9efdc38e13dded5b3a13cca4981fff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical reactions</topic><topic>Dendritic structure</topic><topic>electrode/electrolyte interface</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>ENERGY STORAGE</topic><topic>garnet electrolytes</topic><topic>Interlayers</topic><topic>Li metal anodes</topic><topic>Lithium</topic><topic>Lithium oxides</topic><topic>Metals</topic><topic>reaction-induced interlayers</topic><topic>Side reactions</topic><topic>solid-state batteries</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Yiren</creatorcontrib><creatorcontrib>Xie, Yujun</creatorcontrib><creatorcontrib>Hwang, Sooyeon</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Cha, Judy J.</creatorcontrib><creatorcontrib>Su, Dong</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Yiren</au><au>Xie, Yujun</au><au>Hwang, Sooyeon</au><au>Wang, Qian</au><au>Cha, Judy J.</au><au>Su, Dong</au><au>Wang, Hailiang</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Highly Efficient All‐Solid‐State Lithium/Electrolyte Interface Induced by an Energetic Reaction</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-08-10</date><risdate>2020</risdate><volume>59</volume><issue>33</issue><spage>14003</spage><epage>14008</epage><pages>14003-14008</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The energetic chemical reaction between Zn(NO3)2 and Li is used to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte. This interlayer, composed of Zn, ZnLix alloy, Li3N, Li2O, and other species, possesses strong affinities with both Li metal and LLZTO and affords highly efficient conductive pathways for Li+ transport through the interface. The unique structure and properties of the interlayer lead to Li metal anodes with longer cycle life, higher efficiency, and better safety compared to the current best Li metal electrodes operating in liquid electrolytes while retaining comparable capacity, rate, and overpotential. All‐solid‐state Li||Li cells can operate at very demanding current–capacity conditions of 4 mA cm−2–8 mAh cm−2. Thousands of hours of continuous cycling are achieved at Coulombic efficiency &gt;99.5 % without dendrite formation or side reactions with the electrolyte. The energetic reaction between Li and Zn(NO3)2 is employed to create a solid‐state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 electrolyte, enabling high capacity, fast charging–discharging rates, and small overpotentials matching the performance of liquid‐electrolyte Li metal electrodes, but with longer cycle life, higher efficiency, and better safety.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32374495</pmid><doi>10.1002/anie.202004477</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><orcidid>https://orcid.org/0000000344092034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2020-08, Vol.59 (33), p.14003-14008
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1631927
source Wiley Online Library All Journals
subjects Chemical reactions
Dendritic structure
electrode/electrolyte interface
Electrolytes
Electrolytic cells
ENERGY STORAGE
garnet electrolytes
Interlayers
Li metal anodes
Lithium
Lithium oxides
Metals
reaction-induced interlayers
Side reactions
solid-state batteries
Zinc
title A Highly Efficient All‐Solid‐State Lithium/Electrolyte Interface Induced by an Energetic Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Highly%20Efficient%20All%E2%80%90Solid%E2%80%90State%20Lithium/Electrolyte%20Interface%20Induced%20by%20an%20Energetic%20Reaction&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Zhong,%20Yiren&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2020-08-10&rft.volume=59&rft.issue=33&rft.spage=14003&rft.epage=14008&rft.pages=14003-14008&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202004477&rft_dat=%3Cproquest_osti_%3E2430057414%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430057414&rft_id=info:pmid/32374495&rfr_iscdi=true