High speed PLIF study of the Richtmyer–Meshkov instability upon re-shock

The Richtmyer–Meshkov instability (RMI) of a twice-shocked gas interface is studied using high-speed planar-laser induced fluorescence (PLIF) in the Wisconsin Shock Tube Laboratory’s vertical shock tube. The initial condition (IC) is a shear layer with broadband diffuse perturbations at the interfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2020-04, Vol.410 (C)
Hauptverfasser: Noble, Christopher Dennis, Herzog, Josh M., Rothamer, David A., Ames, Alex M., Oakley, Jason, Bonazza, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page
container_title Physica. D
container_volume 410
creator Noble, Christopher Dennis
Herzog, Josh M.
Rothamer, David A.
Ames, Alex M.
Oakley, Jason
Bonazza, Riccardo
description The Richtmyer–Meshkov instability (RMI) of a twice-shocked gas interface is studied using high-speed planar-laser induced fluorescence (PLIF) in the Wisconsin Shock Tube Laboratory’s vertical shock tube. The initial condition (IC) is a shear layer with broadband diffuse perturbations at the interface between a helium-acetone mixture and argon. This IC is accelerated by a shock of nominal strength M = 1.8, and then accelerated again by the transmitted shock that reflects off the end wall of the tube. An estimate of the light gas mole fraction is extracted from high-speed imaging using an iterative process that accounts for the nonlinear temperature dependence of the acetone’s fluorescence quantum yield (FQY) and absorption cross-section. A vorticity deposition model for the initial growth rate after reshock is compared with the Mikaelian model for re-shock. Previously used in literature, the number of generations is shown to naturally arise from a normalisation of the scalar transport equation. Here, a self-similar analysis is then performed using the mole fraction data to explore the evolution of the RMI after reshock and the higher order moments of the light gas mole fraction are compared with a proposed model.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1631732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1631732</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16317323</originalsourceid><addsrcrecordid>eNqNzk8KgkAUgPEhCrI_d3i0F8YRHFtHYlEQ0V5sfDaT5ohvCtx1h27YSWrRAVp9m9_iGzAviKXwYy7EkHk8iKQvZLwcswnRlXMeyFB6bJuaiwZqEQs47DYJkLsXPdgSnEY4GqXdrcfu_XztkXRlH2AacvnZ1Mb1cG9tAx36pK2qZmxU5jXh_NcpWyTr0yr1LTmTkTIOlVa2aVC5LIjC74AI_0Ifij0-lw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High speed PLIF study of the Richtmyer–Meshkov instability upon re-shock</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Noble, Christopher Dennis ; Herzog, Josh M. ; Rothamer, David A. ; Ames, Alex M. ; Oakley, Jason ; Bonazza, Riccardo</creator><creatorcontrib>Noble, Christopher Dennis ; Herzog, Josh M. ; Rothamer, David A. ; Ames, Alex M. ; Oakley, Jason ; Bonazza, Riccardo ; Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><description>The Richtmyer–Meshkov instability (RMI) of a twice-shocked gas interface is studied using high-speed planar-laser induced fluorescence (PLIF) in the Wisconsin Shock Tube Laboratory’s vertical shock tube. The initial condition (IC) is a shear layer with broadband diffuse perturbations at the interface between a helium-acetone mixture and argon. This IC is accelerated by a shock of nominal strength M = 1.8, and then accelerated again by the transmitted shock that reflects off the end wall of the tube. An estimate of the light gas mole fraction is extracted from high-speed imaging using an iterative process that accounts for the nonlinear temperature dependence of the acetone’s fluorescence quantum yield (FQY) and absorption cross-section. A vorticity deposition model for the initial growth rate after reshock is compared with the Mikaelian model for re-shock. Previously used in literature, the number of generations is shown to naturally arise from a normalisation of the scalar transport equation. Here, a self-similar analysis is then performed using the mole fraction data to explore the evolution of the RMI after reshock and the higher order moments of the light gas mole fraction are compared with a proposed model.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; High-speed imaging ; Inertial confinement fusion ; PLIF ; Richtmyer-Meshkov instability ; Shock-driven turbulent mixing ; Shock-induced instabilities ; Shock-induced turbulent mixing</subject><ispartof>Physica. D, 2020-04, Vol.410 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1631732$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Noble, Christopher Dennis</creatorcontrib><creatorcontrib>Herzog, Josh M.</creatorcontrib><creatorcontrib>Rothamer, David A.</creatorcontrib><creatorcontrib>Ames, Alex M.</creatorcontrib><creatorcontrib>Oakley, Jason</creatorcontrib><creatorcontrib>Bonazza, Riccardo</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><title>High speed PLIF study of the Richtmyer–Meshkov instability upon re-shock</title><title>Physica. D</title><description>The Richtmyer–Meshkov instability (RMI) of a twice-shocked gas interface is studied using high-speed planar-laser induced fluorescence (PLIF) in the Wisconsin Shock Tube Laboratory’s vertical shock tube. The initial condition (IC) is a shear layer with broadband diffuse perturbations at the interface between a helium-acetone mixture and argon. This IC is accelerated by a shock of nominal strength M = 1.8, and then accelerated again by the transmitted shock that reflects off the end wall of the tube. An estimate of the light gas mole fraction is extracted from high-speed imaging using an iterative process that accounts for the nonlinear temperature dependence of the acetone’s fluorescence quantum yield (FQY) and absorption cross-section. A vorticity deposition model for the initial growth rate after reshock is compared with the Mikaelian model for re-shock. Previously used in literature, the number of generations is shown to naturally arise from a normalisation of the scalar transport equation. Here, a self-similar analysis is then performed using the mole fraction data to explore the evolution of the RMI after reshock and the higher order moments of the light gas mole fraction are compared with a proposed model.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>High-speed imaging</subject><subject>Inertial confinement fusion</subject><subject>PLIF</subject><subject>Richtmyer-Meshkov instability</subject><subject>Shock-driven turbulent mixing</subject><subject>Shock-induced instabilities</subject><subject>Shock-induced turbulent mixing</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNzk8KgkAUgPEhCrI_d3i0F8YRHFtHYlEQ0V5sfDaT5ohvCtx1h27YSWrRAVp9m9_iGzAviKXwYy7EkHk8iKQvZLwcswnRlXMeyFB6bJuaiwZqEQs47DYJkLsXPdgSnEY4GqXdrcfu_XztkXRlH2AacvnZ1Mb1cG9tAx36pK2qZmxU5jXh_NcpWyTr0yr1LTmTkTIOlVa2aVC5LIjC74AI_0Ifij0-lw</recordid><startdate>20200418</startdate><enddate>20200418</enddate><creator>Noble, Christopher Dennis</creator><creator>Herzog, Josh M.</creator><creator>Rothamer, David A.</creator><creator>Ames, Alex M.</creator><creator>Oakley, Jason</creator><creator>Bonazza, Riccardo</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200418</creationdate><title>High speed PLIF study of the Richtmyer–Meshkov instability upon re-shock</title><author>Noble, Christopher Dennis ; Herzog, Josh M. ; Rothamer, David A. ; Ames, Alex M. ; Oakley, Jason ; Bonazza, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16317323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>High-speed imaging</topic><topic>Inertial confinement fusion</topic><topic>PLIF</topic><topic>Richtmyer-Meshkov instability</topic><topic>Shock-driven turbulent mixing</topic><topic>Shock-induced instabilities</topic><topic>Shock-induced turbulent mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noble, Christopher Dennis</creatorcontrib><creatorcontrib>Herzog, Josh M.</creatorcontrib><creatorcontrib>Rothamer, David A.</creatorcontrib><creatorcontrib>Ames, Alex M.</creatorcontrib><creatorcontrib>Oakley, Jason</creatorcontrib><creatorcontrib>Bonazza, Riccardo</creatorcontrib><creatorcontrib>Univ. of Wisconsin, Madison, WI (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noble, Christopher Dennis</au><au>Herzog, Josh M.</au><au>Rothamer, David A.</au><au>Ames, Alex M.</au><au>Oakley, Jason</au><au>Bonazza, Riccardo</au><aucorp>Univ. of Wisconsin, Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High speed PLIF study of the Richtmyer–Meshkov instability upon re-shock</atitle><jtitle>Physica. D</jtitle><date>2020-04-18</date><risdate>2020</risdate><volume>410</volume><issue>C</issue><issn>0167-2789</issn><eissn>1872-8022</eissn><abstract>The Richtmyer–Meshkov instability (RMI) of a twice-shocked gas interface is studied using high-speed planar-laser induced fluorescence (PLIF) in the Wisconsin Shock Tube Laboratory’s vertical shock tube. The initial condition (IC) is a shear layer with broadband diffuse perturbations at the interface between a helium-acetone mixture and argon. This IC is accelerated by a shock of nominal strength M = 1.8, and then accelerated again by the transmitted shock that reflects off the end wall of the tube. An estimate of the light gas mole fraction is extracted from high-speed imaging using an iterative process that accounts for the nonlinear temperature dependence of the acetone’s fluorescence quantum yield (FQY) and absorption cross-section. A vorticity deposition model for the initial growth rate after reshock is compared with the Mikaelian model for re-shock. Previously used in literature, the number of generations is shown to naturally arise from a normalisation of the scalar transport equation. Here, a self-similar analysis is then performed using the mole fraction data to explore the evolution of the RMI after reshock and the higher order moments of the light gas mole fraction are compared with a proposed model.</abstract><cop>United States</cop><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-2789
ispartof Physica. D, 2020-04, Vol.410 (C)
issn 0167-2789
1872-8022
language eng
recordid cdi_osti_scitechconnect_1631732
source ScienceDirect Journals (5 years ago - present)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
High-speed imaging
Inertial confinement fusion
PLIF
Richtmyer-Meshkov instability
Shock-driven turbulent mixing
Shock-induced instabilities
Shock-induced turbulent mixing
title High speed PLIF study of the Richtmyer–Meshkov instability upon re-shock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20speed%20PLIF%20study%20of%20the%20Richtmyer%E2%80%93Meshkov%20instability%20upon%20re-shock&rft.jtitle=Physica.%20D&rft.au=Noble,%20Christopher%20Dennis&rft.aucorp=Univ.%20of%20Wisconsin,%20Madison,%20WI%20(United%20States)&rft.date=2020-04-18&rft.volume=410&rft.issue=C&rft.issn=0167-2789&rft.eissn=1872-8022&rft_id=info:doi/&rft_dat=%3Costi%3E1631732%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true