Anion order in oxysulfide perovskites: origins and implications

Heteroanionic oxysulfide perovskite compounds represent an emerging class of new materials allowing for a wide range of tunability in the electronic structure that could lead to a diverse spectrum of novel and improved functionalities. Unlike cation ordered double perovskites—where the origins and d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials 2020-06, Vol.6 (1), Article 71
Hauptverfasser: Pilania, Ghanshyam, Ghosh, Ayana, Hartman, Steven T., Mishra, Rohan, Stanek, Christopher R., Uberuaga, Blas P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj computational materials
container_volume 6
creator Pilania, Ghanshyam
Ghosh, Ayana
Hartman, Steven T.
Mishra, Rohan
Stanek, Christopher R.
Uberuaga, Blas P.
description Heteroanionic oxysulfide perovskite compounds represent an emerging class of new materials allowing for a wide range of tunability in the electronic structure that could lead to a diverse spectrum of novel and improved functionalities. Unlike cation ordered double perovskites—where the origins and design rules of various experimentally observed cation orderings are well known and understood—anion ordering in heteroanionic perovskites remains a largely uncharted territory. In this contribution, we present and discuss insights that have emerged from our first-principles-based electronic structure analysis of a prototypical anion-ordered SrHf(O 0.5 S 0.5 ) 3 oxysulfide chemistry, studied in all possible anion configurations allowed within a finite size supercell. We demonstrate that the preferred anion ordering is always an all- c i s arrangement of anions around an HfO 3 S 3 octahedron. As a general finding beyond the specific chemistry, the origins of this ordering tendency are traced back to a combined stabilization effect stemming from electronic, elastic, and electrostatic contributions. These qualitative notions are also quantified using state-of-the-art machine learning models. We further study the relative stability of the identified ordering as a function of A (Ca, Sr, Ba) and B (Ti, Zr, Hf) site chemistries and probe chemistry-dependent trends in the electronic structure and functionality of the material. Most remarkably, we find that the identified ground-state anion ordering breaks the inversion symmetry to create a family of oxysulfide ferroelectrics with a macroscopic polarization >30 μC/cm 2 , exhibiting a significant promise for electronic materials applications.
doi_str_mv 10.1038/s41524-020-0338-1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1631510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488776360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-322ff1ccc5c21be56d90d5358194809904676d1ed36bc0805a04c2e3f58cd72e3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGp_gLdFz6szySab9SKl-AWCFz2HbZKtqW1Sk63Yf2_KCnoRT_PCPO8wPIScIlwgMHmZKuS0KoFCCYzJEg_IiAKvS9YIOPyVj8kkpSUAYEMlrWBErqfeBV-EaGwsXA6fu7Rddc7YYmNj-EhvrrfpKgNu4XwqWm8Kt96snG77XEwn5KhrV8lOvueYvNzePM_uy8enu4fZ9LHUlYS-ZJR2HWqtuaY4t1yYBgxnXGKT900DlaiFQWuYmGuQwFuoNLWs41KbOocxORvuhtQ7lXT-Sr_q4L3VvULBkGcTY3I-QJsY3rc29WoZttHnvxStpKxrwcQ_FEiJFIBmCgdKx5BStJ3aRLdu404hqL11NVhX2braW1eYO3TopMz6hY0_l_8ufQGgtYH-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408812002</pqid></control><display><type>article</type><title>Anion order in oxysulfide perovskites: origins and implications</title><source>Springer Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pilania, Ghanshyam ; Ghosh, Ayana ; Hartman, Steven T. ; Mishra, Rohan ; Stanek, Christopher R. ; Uberuaga, Blas P.</creator><creatorcontrib>Pilania, Ghanshyam ; Ghosh, Ayana ; Hartman, Steven T. ; Mishra, Rohan ; Stanek, Christopher R. ; Uberuaga, Blas P. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Heteroanionic oxysulfide perovskite compounds represent an emerging class of new materials allowing for a wide range of tunability in the electronic structure that could lead to a diverse spectrum of novel and improved functionalities. Unlike cation ordered double perovskites—where the origins and design rules of various experimentally observed cation orderings are well known and understood—anion ordering in heteroanionic perovskites remains a largely uncharted territory. In this contribution, we present and discuss insights that have emerged from our first-principles-based electronic structure analysis of a prototypical anion-ordered SrHf(O 0.5 S 0.5 ) 3 oxysulfide chemistry, studied in all possible anion configurations allowed within a finite size supercell. We demonstrate that the preferred anion ordering is always an all- c i s arrangement of anions around an HfO 3 S 3 octahedron. As a general finding beyond the specific chemistry, the origins of this ordering tendency are traced back to a combined stabilization effect stemming from electronic, elastic, and electrostatic contributions. These qualitative notions are also quantified using state-of-the-art machine learning models. We further study the relative stability of the identified ordering as a function of A (Ca, Sr, Ba) and B (Ti, Zr, Hf) site chemistries and probe chemistry-dependent trends in the electronic structure and functionality of the material. Most remarkably, we find that the identified ground-state anion ordering breaks the inversion symmetry to create a family of oxysulfide ferroelectrics with a macroscopic polarization &gt;30 μC/cm 2 , exhibiting a significant promise for electronic materials applications.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-020-0338-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1038 ; 639/301/119/996 ; Anions ; Cations ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Electronic materials ; Electronic structure ; Ferroelectric materials ; Ferroelectricity ; ferroelectrics and multiferroics ; First principles ; Learning algorithms ; Machine learning ; MATERIALS SCIENCE ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Origins ; Perovskites ; Structural analysis ; Theoretical ; Zirconium</subject><ispartof>npj computational materials, 2020-06, Vol.6 (1), Article 71</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-322ff1ccc5c21be56d90d5358194809904676d1ed36bc0805a04c2e3f58cd72e3</citedby><cites>FETCH-LOGICAL-c480t-322ff1ccc5c21be56d90d5358194809904676d1ed36bc0805a04c2e3f58cd72e3</cites><orcidid>0000-0003-1261-0087 ; 0000-0003-4460-1572 ; 0000-0001-6934-6219 ; 0000-0002-0432-3689 ; 0000000312610087 ; 0000000204323689 ; 0000000344601572 ; 0000000169346219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41524-020-0338-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41524-020-0338-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,27903,27904,41099,42168,51554</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1631510$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pilania, Ghanshyam</creatorcontrib><creatorcontrib>Ghosh, Ayana</creatorcontrib><creatorcontrib>Hartman, Steven T.</creatorcontrib><creatorcontrib>Mishra, Rohan</creatorcontrib><creatorcontrib>Stanek, Christopher R.</creatorcontrib><creatorcontrib>Uberuaga, Blas P.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Anion order in oxysulfide perovskites: origins and implications</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>Heteroanionic oxysulfide perovskite compounds represent an emerging class of new materials allowing for a wide range of tunability in the electronic structure that could lead to a diverse spectrum of novel and improved functionalities. Unlike cation ordered double perovskites—where the origins and design rules of various experimentally observed cation orderings are well known and understood—anion ordering in heteroanionic perovskites remains a largely uncharted territory. In this contribution, we present and discuss insights that have emerged from our first-principles-based electronic structure analysis of a prototypical anion-ordered SrHf(O 0.5 S 0.5 ) 3 oxysulfide chemistry, studied in all possible anion configurations allowed within a finite size supercell. We demonstrate that the preferred anion ordering is always an all- c i s arrangement of anions around an HfO 3 S 3 octahedron. As a general finding beyond the specific chemistry, the origins of this ordering tendency are traced back to a combined stabilization effect stemming from electronic, elastic, and electrostatic contributions. These qualitative notions are also quantified using state-of-the-art machine learning models. We further study the relative stability of the identified ordering as a function of A (Ca, Sr, Ba) and B (Ti, Zr, Hf) site chemistries and probe chemistry-dependent trends in the electronic structure and functionality of the material. Most remarkably, we find that the identified ground-state anion ordering breaks the inversion symmetry to create a family of oxysulfide ferroelectrics with a macroscopic polarization &gt;30 μC/cm 2 , exhibiting a significant promise for electronic materials applications.</description><subject>639/301/1034/1038</subject><subject>639/301/119/996</subject><subject>Anions</subject><subject>Cations</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Electronic materials</subject><subject>Electronic structure</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>ferroelectrics and multiferroics</subject><subject>First principles</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Origins</subject><subject>Perovskites</subject><subject>Structural analysis</subject><subject>Theoretical</subject><subject>Zirconium</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1LAzEQhoMoWGp_gLdFz6szySab9SKl-AWCFz2HbZKtqW1Sk63Yf2_KCnoRT_PCPO8wPIScIlwgMHmZKuS0KoFCCYzJEg_IiAKvS9YIOPyVj8kkpSUAYEMlrWBErqfeBV-EaGwsXA6fu7Rddc7YYmNj-EhvrrfpKgNu4XwqWm8Kt96snG77XEwn5KhrV8lOvueYvNzePM_uy8enu4fZ9LHUlYS-ZJR2HWqtuaY4t1yYBgxnXGKT900DlaiFQWuYmGuQwFuoNLWs41KbOocxORvuhtQ7lXT-Sr_q4L3VvULBkGcTY3I-QJsY3rc29WoZttHnvxStpKxrwcQ_FEiJFIBmCgdKx5BStJ3aRLdu404hqL11NVhX2braW1eYO3TopMz6hY0_l_8ufQGgtYH-</recordid><startdate>20200603</startdate><enddate>20200603</enddate><creator>Pilania, Ghanshyam</creator><creator>Ghosh, Ayana</creator><creator>Hartman, Steven T.</creator><creator>Mishra, Rohan</creator><creator>Stanek, Christopher R.</creator><creator>Uberuaga, Blas P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1261-0087</orcidid><orcidid>https://orcid.org/0000-0003-4460-1572</orcidid><orcidid>https://orcid.org/0000-0001-6934-6219</orcidid><orcidid>https://orcid.org/0000-0002-0432-3689</orcidid><orcidid>https://orcid.org/0000000312610087</orcidid><orcidid>https://orcid.org/0000000204323689</orcidid><orcidid>https://orcid.org/0000000344601572</orcidid><orcidid>https://orcid.org/0000000169346219</orcidid></search><sort><creationdate>20200603</creationdate><title>Anion order in oxysulfide perovskites: origins and implications</title><author>Pilania, Ghanshyam ; Ghosh, Ayana ; Hartman, Steven T. ; Mishra, Rohan ; Stanek, Christopher R. ; Uberuaga, Blas P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-322ff1ccc5c21be56d90d5358194809904676d1ed36bc0805a04c2e3f58cd72e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/301/1034/1038</topic><topic>639/301/119/996</topic><topic>Anions</topic><topic>Cations</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Electronic materials</topic><topic>Electronic structure</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>ferroelectrics and multiferroics</topic><topic>First principles</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Origins</topic><topic>Perovskites</topic><topic>Structural analysis</topic><topic>Theoretical</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pilania, Ghanshyam</creatorcontrib><creatorcontrib>Ghosh, Ayana</creatorcontrib><creatorcontrib>Hartman, Steven T.</creatorcontrib><creatorcontrib>Mishra, Rohan</creatorcontrib><creatorcontrib>Stanek, Christopher R.</creatorcontrib><creatorcontrib>Uberuaga, Blas P.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Biological Science Journals</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pilania, Ghanshyam</au><au>Ghosh, Ayana</au><au>Hartman, Steven T.</au><au>Mishra, Rohan</au><au>Stanek, Christopher R.</au><au>Uberuaga, Blas P.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anion order in oxysulfide perovskites: origins and implications</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2020-06-03</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>71</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>Heteroanionic oxysulfide perovskite compounds represent an emerging class of new materials allowing for a wide range of tunability in the electronic structure that could lead to a diverse spectrum of novel and improved functionalities. Unlike cation ordered double perovskites—where the origins and design rules of various experimentally observed cation orderings are well known and understood—anion ordering in heteroanionic perovskites remains a largely uncharted territory. In this contribution, we present and discuss insights that have emerged from our first-principles-based electronic structure analysis of a prototypical anion-ordered SrHf(O 0.5 S 0.5 ) 3 oxysulfide chemistry, studied in all possible anion configurations allowed within a finite size supercell. We demonstrate that the preferred anion ordering is always an all- c i s arrangement of anions around an HfO 3 S 3 octahedron. As a general finding beyond the specific chemistry, the origins of this ordering tendency are traced back to a combined stabilization effect stemming from electronic, elastic, and electrostatic contributions. These qualitative notions are also quantified using state-of-the-art machine learning models. We further study the relative stability of the identified ordering as a function of A (Ca, Sr, Ba) and B (Ti, Zr, Hf) site chemistries and probe chemistry-dependent trends in the electronic structure and functionality of the material. Most remarkably, we find that the identified ground-state anion ordering breaks the inversion symmetry to create a family of oxysulfide ferroelectrics with a macroscopic polarization &gt;30 μC/cm 2 , exhibiting a significant promise for electronic materials applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-020-0338-1</doi><orcidid>https://orcid.org/0000-0003-1261-0087</orcidid><orcidid>https://orcid.org/0000-0003-4460-1572</orcidid><orcidid>https://orcid.org/0000-0001-6934-6219</orcidid><orcidid>https://orcid.org/0000-0002-0432-3689</orcidid><orcidid>https://orcid.org/0000000312610087</orcidid><orcidid>https://orcid.org/0000000204323689</orcidid><orcidid>https://orcid.org/0000000344601572</orcidid><orcidid>https://orcid.org/0000000169346219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2020-06, Vol.6 (1), Article 71
issn 2057-3960
2057-3960
language eng
recordid cdi_osti_scitechconnect_1631510
source Springer Open Access; DOAJ Directory of Open Access Journals; Nature Free; EZB-FREE-00999 freely available EZB journals
subjects 639/301/1034/1038
639/301/119/996
Anions
Cations
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Electronic materials
Electronic structure
Ferroelectric materials
Ferroelectricity
ferroelectrics and multiferroics
First principles
Learning algorithms
Machine learning
MATERIALS SCIENCE
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Origins
Perovskites
Structural analysis
Theoretical
Zirconium
title Anion order in oxysulfide perovskites: origins and implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anion%20order%20in%20oxysulfide%20perovskites:%20origins%20and%20implications&rft.jtitle=npj%20computational%20materials&rft.au=Pilania,%20Ghanshyam&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2020-06-03&rft.volume=6&rft.issue=1&rft.artnum=71&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-020-0338-1&rft_dat=%3Cproquest_osti_%3E2488776360%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408812002&rft_id=info:pmid/&rfr_iscdi=true