Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading

We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO ) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2020-06, Vol.54 (11), p.6900-6907
Hauptverfasser: Murialdo, Maxwell, Goldstein, Hannah M, Stolaroff, Joshuah K, Nguyen, Du T, McCoy, Sean T, Bourcier, William L, Cerón, Maira R, Knipe, Jennifer M, Worthington, Matthew A, Smith, Megan M, Aines, Roger D, Baker, Sarah E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6907
container_issue 11
container_start_page 6900
container_title Environmental science & technology
container_volume 54
creator Murialdo, Maxwell
Goldstein, Hannah M
Stolaroff, Joshuah K
Nguyen, Du T
McCoy, Sean T
Bourcier, William L
Cerón, Maira R
Knipe, Jennifer M
Worthington, Matthew A
Smith, Megan M
Aines, Roger D
Baker, Sarah E
description We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO ) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific CO sorption rates (in excess of 5 μmol s g bar ) and high selectivity due to their chemical mechanism, and can be regenerated with low-energy air stripping. Therefore, these composite sorbents combine the high selectivity of liquid sorbents with the high specific sorption rates and low regeneration energies found in many solid sorbents. We characterized these composite sorbents with X-ray computed tomography, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Furthermore, we measured composite sorption capacities of up to 0.62 mol CO kg and recorded breakthrough curves in a flow-through, fixed-bed reactor using both simulated biogas and locally sourced industrial biogas. Additional tests of the composite sorbent were carried out with pure CO in a sealed pressure drop apparatus. This experimental data was used to validate a numerical model of the setup and to simulate an industrial-scale biogas upgrading process. Finally, we performed a preliminary technoeconomic analysis for this upgrading process and found that this composite sorbent can upgrade biogas at a lower cost (∼$0.97 per GJ) than other currently implemented techniques.
doi_str_mv 10.1021/acs.est.0c01755
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1631467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399838558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-9862c2d08012936d5e751849ae10cd7b6d0a48c9db801678ea8131915fa350233</originalsourceid><addsrcrecordid>eNpdkb1P5DAQxS3ECRbuajoUQUOTZcaOE7uEZfmQkO6kA-mqsxzHWYySeLGTgv8er3ahoBqN5jdPb-YRcoIwR6B4qU2c2zjOwQBWnO-RGXIKORcc98kMAFkuWfnvkBzF-AoAlIE4IIeMsqrgks7I_6eXYG1-43o7ROcH3WV_ghtGXXc2--sbN_XZQoc6TUabLXy_9tGNm1Go7TDGrPUhW7atMy612bXzKx2z5_Uq6MYNq5_kR6u7aH_t6jF5vl0-Le7zx993D4urx9wwycZcipIa2oAApMlvw23FURRSWwTTVHXZgC6EkU2diLISVgtkKJG3mvF0FDsmZ1tdH0enokkWzYvxw2DNqLBkWJRVgi620Dr4tym9TfUuGtt1erB-iooyKQUTnIuEnn9DX_0U0ncSVSAIVlBOE3W5pUzwMQbbqnVwvQ7vCkFt8lEpH7XZ3uWTNk53ulPd2-aL_wyEfQDvNotE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410834252</pqid></control><display><type>article</type><title>Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading</title><source>American Chemical Society Journals</source><creator>Murialdo, Maxwell ; Goldstein, Hannah M ; Stolaroff, Joshuah K ; Nguyen, Du T ; McCoy, Sean T ; Bourcier, William L ; Cerón, Maira R ; Knipe, Jennifer M ; Worthington, Matthew A ; Smith, Megan M ; Aines, Roger D ; Baker, Sarah E</creator><creatorcontrib>Murialdo, Maxwell ; Goldstein, Hannah M ; Stolaroff, Joshuah K ; Nguyen, Du T ; McCoy, Sean T ; Bourcier, William L ; Cerón, Maira R ; Knipe, Jennifer M ; Worthington, Matthew A ; Smith, Megan M ; Aines, Roger D ; Baker, Sarah E ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; University of California, Berkeley, CA (United States)</creatorcontrib><description>We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO ) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific CO sorption rates (in excess of 5 μmol s g bar ) and high selectivity due to their chemical mechanism, and can be regenerated with low-energy air stripping. Therefore, these composite sorbents combine the high selectivity of liquid sorbents with the high specific sorption rates and low regeneration energies found in many solid sorbents. We characterized these composite sorbents with X-ray computed tomography, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Furthermore, we measured composite sorption capacities of up to 0.62 mol CO kg and recorded breakthrough curves in a flow-through, fixed-bed reactor using both simulated biogas and locally sourced industrial biogas. Additional tests of the composite sorbent were carried out with pure CO in a sealed pressure drop apparatus. This experimental data was used to validate a numerical model of the setup and to simulate an industrial-scale biogas upgrading process. Finally, we performed a preliminary technoeconomic analysis for this upgrading process and found that this composite sorbent can upgrade biogas at a lower cost (∼$0.97 per GJ) than other currently implemented techniques.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c01755</identifier><identifier>PMID: 32374592</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Air stripping ; Biogas ; Carbon dioxide ; Carbon sequestration ; Computed tomography ; Computer simulation ; Emissions control ; ENVIRONMENTAL SCIENCES ; Extrusion ; Gas pipelines ; Mathematical models ; Natural gas ; Numerical models ; Pressure drop ; Regeneration ; Scanning electron microscopy ; Selectivity ; Silicones ; Sodium ; Sodium carbonate ; Sorbents ; Sorption ; Three dimensional composites ; Three dimensional printing ; Upgrading ; X-ray diffraction</subject><ispartof>Environmental science &amp; technology, 2020-06, Vol.54 (11), p.6900-6907</ispartof><rights>Copyright American Chemical Society Jun 2, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-9862c2d08012936d5e751849ae10cd7b6d0a48c9db801678ea8131915fa350233</citedby><cites>FETCH-LOGICAL-c393t-9862c2d08012936d5e751849ae10cd7b6d0a48c9db801678ea8131915fa350233</cites><orcidid>0000-0003-3611-6796 ; 0000-0003-0401-893X ; 0000-0001-9544-0444 ; 0000-0001-5509-3345 ; 0000-0002-5151-0479 ; 0000000251510479 ; 0000000195440444 ; 0000000155093345 ; 0000000336116796 ; 000000030401893X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2752,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32374592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1631467$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Murialdo, Maxwell</creatorcontrib><creatorcontrib>Goldstein, Hannah M</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><creatorcontrib>McCoy, Sean T</creatorcontrib><creatorcontrib>Bourcier, William L</creatorcontrib><creatorcontrib>Cerón, Maira R</creatorcontrib><creatorcontrib>Knipe, Jennifer M</creatorcontrib><creatorcontrib>Worthington, Matthew A</creatorcontrib><creatorcontrib>Smith, Megan M</creatorcontrib><creatorcontrib>Aines, Roger D</creatorcontrib><creatorcontrib>Baker, Sarah E</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>University of California, Berkeley, CA (United States)</creatorcontrib><title>Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading</title><title>Environmental science &amp; technology</title><addtitle>Environ Sci Technol</addtitle><description>We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO ) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific CO sorption rates (in excess of 5 μmol s g bar ) and high selectivity due to their chemical mechanism, and can be regenerated with low-energy air stripping. Therefore, these composite sorbents combine the high selectivity of liquid sorbents with the high specific sorption rates and low regeneration energies found in many solid sorbents. We characterized these composite sorbents with X-ray computed tomography, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Furthermore, we measured composite sorption capacities of up to 0.62 mol CO kg and recorded breakthrough curves in a flow-through, fixed-bed reactor using both simulated biogas and locally sourced industrial biogas. Additional tests of the composite sorbent were carried out with pure CO in a sealed pressure drop apparatus. This experimental data was used to validate a numerical model of the setup and to simulate an industrial-scale biogas upgrading process. Finally, we performed a preliminary technoeconomic analysis for this upgrading process and found that this composite sorbent can upgrade biogas at a lower cost (∼$0.97 per GJ) than other currently implemented techniques.</description><subject>Air stripping</subject><subject>Biogas</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Emissions control</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Extrusion</subject><subject>Gas pipelines</subject><subject>Mathematical models</subject><subject>Natural gas</subject><subject>Numerical models</subject><subject>Pressure drop</subject><subject>Regeneration</subject><subject>Scanning electron microscopy</subject><subject>Selectivity</subject><subject>Silicones</subject><subject>Sodium</subject><subject>Sodium carbonate</subject><subject>Sorbents</subject><subject>Sorption</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Upgrading</subject><subject>X-ray diffraction</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkb1P5DAQxS3ECRbuajoUQUOTZcaOE7uEZfmQkO6kA-mqsxzHWYySeLGTgv8er3ahoBqN5jdPb-YRcoIwR6B4qU2c2zjOwQBWnO-RGXIKORcc98kMAFkuWfnvkBzF-AoAlIE4IIeMsqrgks7I_6eXYG1-43o7ROcH3WV_ghtGXXc2--sbN_XZQoc6TUabLXy_9tGNm1Go7TDGrPUhW7atMy612bXzKx2z5_Uq6MYNq5_kR6u7aH_t6jF5vl0-Le7zx993D4urx9wwycZcipIa2oAApMlvw23FURRSWwTTVHXZgC6EkU2diLISVgtkKJG3mvF0FDsmZ1tdH0enokkWzYvxw2DNqLBkWJRVgi620Dr4tym9TfUuGtt1erB-iooyKQUTnIuEnn9DX_0U0ncSVSAIVlBOE3W5pUzwMQbbqnVwvQ7vCkFt8lEpH7XZ3uWTNk53ulPd2-aL_wyEfQDvNotE</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Murialdo, Maxwell</creator><creator>Goldstein, Hannah M</creator><creator>Stolaroff, Joshuah K</creator><creator>Nguyen, Du T</creator><creator>McCoy, Sean T</creator><creator>Bourcier, William L</creator><creator>Cerón, Maira R</creator><creator>Knipe, Jennifer M</creator><creator>Worthington, Matthew A</creator><creator>Smith, Megan M</creator><creator>Aines, Roger D</creator><creator>Baker, Sarah E</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3611-6796</orcidid><orcidid>https://orcid.org/0000-0003-0401-893X</orcidid><orcidid>https://orcid.org/0000-0001-9544-0444</orcidid><orcidid>https://orcid.org/0000-0001-5509-3345</orcidid><orcidid>https://orcid.org/0000-0002-5151-0479</orcidid><orcidid>https://orcid.org/0000000251510479</orcidid><orcidid>https://orcid.org/0000000195440444</orcidid><orcidid>https://orcid.org/0000000155093345</orcidid><orcidid>https://orcid.org/0000000336116796</orcidid><orcidid>https://orcid.org/000000030401893X</orcidid></search><sort><creationdate>20200602</creationdate><title>Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading</title><author>Murialdo, Maxwell ; Goldstein, Hannah M ; Stolaroff, Joshuah K ; Nguyen, Du T ; McCoy, Sean T ; Bourcier, William L ; Cerón, Maira R ; Knipe, Jennifer M ; Worthington, Matthew A ; Smith, Megan M ; Aines, Roger D ; Baker, Sarah E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-9862c2d08012936d5e751849ae10cd7b6d0a48c9db801678ea8131915fa350233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air stripping</topic><topic>Biogas</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Emissions control</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Extrusion</topic><topic>Gas pipelines</topic><topic>Mathematical models</topic><topic>Natural gas</topic><topic>Numerical models</topic><topic>Pressure drop</topic><topic>Regeneration</topic><topic>Scanning electron microscopy</topic><topic>Selectivity</topic><topic>Silicones</topic><topic>Sodium</topic><topic>Sodium carbonate</topic><topic>Sorbents</topic><topic>Sorption</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Upgrading</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murialdo, Maxwell</creatorcontrib><creatorcontrib>Goldstein, Hannah M</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><creatorcontrib>McCoy, Sean T</creatorcontrib><creatorcontrib>Bourcier, William L</creatorcontrib><creatorcontrib>Cerón, Maira R</creatorcontrib><creatorcontrib>Knipe, Jennifer M</creatorcontrib><creatorcontrib>Worthington, Matthew A</creatorcontrib><creatorcontrib>Smith, Megan M</creatorcontrib><creatorcontrib>Aines, Roger D</creatorcontrib><creatorcontrib>Baker, Sarah E</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>University of California, Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murialdo, Maxwell</au><au>Goldstein, Hannah M</au><au>Stolaroff, Joshuah K</au><au>Nguyen, Du T</au><au>McCoy, Sean T</au><au>Bourcier, William L</au><au>Cerón, Maira R</au><au>Knipe, Jennifer M</au><au>Worthington, Matthew A</au><au>Smith, Megan M</au><au>Aines, Roger D</au><au>Baker, Sarah E</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>University of California, Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ Sci Technol</addtitle><date>2020-06-02</date><risdate>2020</risdate><volume>54</volume><issue>11</issue><spage>6900</spage><epage>6907</epage><pages>6900-6907</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO ) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific CO sorption rates (in excess of 5 μmol s g bar ) and high selectivity due to their chemical mechanism, and can be regenerated with low-energy air stripping. Therefore, these composite sorbents combine the high selectivity of liquid sorbents with the high specific sorption rates and low regeneration energies found in many solid sorbents. We characterized these composite sorbents with X-ray computed tomography, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Furthermore, we measured composite sorption capacities of up to 0.62 mol CO kg and recorded breakthrough curves in a flow-through, fixed-bed reactor using both simulated biogas and locally sourced industrial biogas. Additional tests of the composite sorbent were carried out with pure CO in a sealed pressure drop apparatus. This experimental data was used to validate a numerical model of the setup and to simulate an industrial-scale biogas upgrading process. Finally, we performed a preliminary technoeconomic analysis for this upgrading process and found that this composite sorbent can upgrade biogas at a lower cost (∼$0.97 per GJ) than other currently implemented techniques.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32374592</pmid><doi>10.1021/acs.est.0c01755</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3611-6796</orcidid><orcidid>https://orcid.org/0000-0003-0401-893X</orcidid><orcidid>https://orcid.org/0000-0001-9544-0444</orcidid><orcidid>https://orcid.org/0000-0001-5509-3345</orcidid><orcidid>https://orcid.org/0000-0002-5151-0479</orcidid><orcidid>https://orcid.org/0000000251510479</orcidid><orcidid>https://orcid.org/0000000195440444</orcidid><orcidid>https://orcid.org/0000000155093345</orcidid><orcidid>https://orcid.org/0000000336116796</orcidid><orcidid>https://orcid.org/000000030401893X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2020-06, Vol.54 (11), p.6900-6907
issn 0013-936X
1520-5851
language eng
recordid cdi_osti_scitechconnect_1631467
source American Chemical Society Journals
subjects Air stripping
Biogas
Carbon dioxide
Carbon sequestration
Computed tomography
Computer simulation
Emissions control
ENVIRONMENTAL SCIENCES
Extrusion
Gas pipelines
Mathematical models
Natural gas
Numerical models
Pressure drop
Regeneration
Scanning electron microscopy
Selectivity
Silicones
Sodium
Sodium carbonate
Sorbents
Sorption
Three dimensional composites
Three dimensional printing
Upgrading
X-ray diffraction
title Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Printable%20Sodium%20Carbonate%20Composite%20Sorbents%20for%20Efficient%20Biogas%20Upgrading&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Murialdo,%20Maxwell&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-06-02&rft.volume=54&rft.issue=11&rft.spage=6900&rft.epage=6907&rft.pages=6900-6907&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c01755&rft_dat=%3Cproquest_osti_%3E2399838558%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410834252&rft_id=info:pmid/32374592&rfr_iscdi=true