Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading
We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO ) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-06, Vol.54 (11), p.6900-6907 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6907 |
---|---|
container_issue | 11 |
container_start_page | 6900 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Murialdo, Maxwell Goldstein, Hannah M Stolaroff, Joshuah K Nguyen, Du T McCoy, Sean T Bourcier, William L Cerón, Maira R Knipe, Jennifer M Worthington, Matthew A Smith, Megan M Aines, Roger D Baker, Sarah E |
description | We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO
) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific CO
sorption rates (in excess of 5 μmol s
g
bar
) and high selectivity due to their chemical mechanism, and can be regenerated with low-energy air stripping. Therefore, these composite sorbents combine the high selectivity of liquid sorbents with the high specific sorption rates and low regeneration energies found in many solid sorbents. We characterized these composite sorbents with X-ray computed tomography, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Furthermore, we measured composite sorption capacities of up to 0.62 mol CO
kg
and recorded breakthrough curves in a flow-through, fixed-bed reactor using both simulated biogas and locally sourced industrial biogas. Additional tests of the composite sorbent were carried out with pure CO
in a sealed pressure drop apparatus. This experimental data was used to validate a numerical model of the setup and to simulate an industrial-scale biogas upgrading process. Finally, we performed a preliminary technoeconomic analysis for this upgrading process and found that this composite sorbent can upgrade biogas at a lower cost (∼$0.97 per GJ) than other currently implemented techniques. |
doi_str_mv | 10.1021/acs.est.0c01755 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1631467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399838558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-9862c2d08012936d5e751849ae10cd7b6d0a48c9db801678ea8131915fa350233</originalsourceid><addsrcrecordid>eNpdkb1P5DAQxS3ECRbuajoUQUOTZcaOE7uEZfmQkO6kA-mqsxzHWYySeLGTgv8er3ahoBqN5jdPb-YRcoIwR6B4qU2c2zjOwQBWnO-RGXIKORcc98kMAFkuWfnvkBzF-AoAlIE4IIeMsqrgks7I_6eXYG1-43o7ROcH3WV_ghtGXXc2--sbN_XZQoc6TUabLXy_9tGNm1Go7TDGrPUhW7atMy612bXzKx2z5_Uq6MYNq5_kR6u7aH_t6jF5vl0-Le7zx993D4urx9wwycZcipIa2oAApMlvw23FURRSWwTTVHXZgC6EkU2diLISVgtkKJG3mvF0FDsmZ1tdH0enokkWzYvxw2DNqLBkWJRVgi620Dr4tym9TfUuGtt1erB-iooyKQUTnIuEnn9DX_0U0ncSVSAIVlBOE3W5pUzwMQbbqnVwvQ7vCkFt8lEpH7XZ3uWTNk53ulPd2-aL_wyEfQDvNotE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410834252</pqid></control><display><type>article</type><title>Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading</title><source>American Chemical Society Journals</source><creator>Murialdo, Maxwell ; Goldstein, Hannah M ; Stolaroff, Joshuah K ; Nguyen, Du T ; McCoy, Sean T ; Bourcier, William L ; Cerón, Maira R ; Knipe, Jennifer M ; Worthington, Matthew A ; Smith, Megan M ; Aines, Roger D ; Baker, Sarah E</creator><creatorcontrib>Murialdo, Maxwell ; Goldstein, Hannah M ; Stolaroff, Joshuah K ; Nguyen, Du T ; McCoy, Sean T ; Bourcier, William L ; Cerón, Maira R ; Knipe, Jennifer M ; Worthington, Matthew A ; Smith, Megan M ; Aines, Roger D ; Baker, Sarah E ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) ; University of California, Berkeley, CA (United States)</creatorcontrib><description>We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO
) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific CO
sorption rates (in excess of 5 μmol s
g
bar
) and high selectivity due to their chemical mechanism, and can be regenerated with low-energy air stripping. Therefore, these composite sorbents combine the high selectivity of liquid sorbents with the high specific sorption rates and low regeneration energies found in many solid sorbents. We characterized these composite sorbents with X-ray computed tomography, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Furthermore, we measured composite sorption capacities of up to 0.62 mol CO
kg
and recorded breakthrough curves in a flow-through, fixed-bed reactor using both simulated biogas and locally sourced industrial biogas. Additional tests of the composite sorbent were carried out with pure CO
in a sealed pressure drop apparatus. This experimental data was used to validate a numerical model of the setup and to simulate an industrial-scale biogas upgrading process. Finally, we performed a preliminary technoeconomic analysis for this upgrading process and found that this composite sorbent can upgrade biogas at a lower cost (∼$0.97 per GJ) than other currently implemented techniques.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c01755</identifier><identifier>PMID: 32374592</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Air stripping ; Biogas ; Carbon dioxide ; Carbon sequestration ; Computed tomography ; Computer simulation ; Emissions control ; ENVIRONMENTAL SCIENCES ; Extrusion ; Gas pipelines ; Mathematical models ; Natural gas ; Numerical models ; Pressure drop ; Regeneration ; Scanning electron microscopy ; Selectivity ; Silicones ; Sodium ; Sodium carbonate ; Sorbents ; Sorption ; Three dimensional composites ; Three dimensional printing ; Upgrading ; X-ray diffraction</subject><ispartof>Environmental science & technology, 2020-06, Vol.54 (11), p.6900-6907</ispartof><rights>Copyright American Chemical Society Jun 2, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-9862c2d08012936d5e751849ae10cd7b6d0a48c9db801678ea8131915fa350233</citedby><cites>FETCH-LOGICAL-c393t-9862c2d08012936d5e751849ae10cd7b6d0a48c9db801678ea8131915fa350233</cites><orcidid>0000-0003-3611-6796 ; 0000-0003-0401-893X ; 0000-0001-9544-0444 ; 0000-0001-5509-3345 ; 0000-0002-5151-0479 ; 0000000251510479 ; 0000000195440444 ; 0000000155093345 ; 0000000336116796 ; 000000030401893X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2752,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32374592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1631467$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Murialdo, Maxwell</creatorcontrib><creatorcontrib>Goldstein, Hannah M</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><creatorcontrib>McCoy, Sean T</creatorcontrib><creatorcontrib>Bourcier, William L</creatorcontrib><creatorcontrib>Cerón, Maira R</creatorcontrib><creatorcontrib>Knipe, Jennifer M</creatorcontrib><creatorcontrib>Worthington, Matthew A</creatorcontrib><creatorcontrib>Smith, Megan M</creatorcontrib><creatorcontrib>Aines, Roger D</creatorcontrib><creatorcontrib>Baker, Sarah E</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>University of California, Berkeley, CA (United States)</creatorcontrib><title>Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading</title><title>Environmental science & technology</title><addtitle>Environ Sci Technol</addtitle><description>We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO
) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific CO
sorption rates (in excess of 5 μmol s
g
bar
) and high selectivity due to their chemical mechanism, and can be regenerated with low-energy air stripping. Therefore, these composite sorbents combine the high selectivity of liquid sorbents with the high specific sorption rates and low regeneration energies found in many solid sorbents. We characterized these composite sorbents with X-ray computed tomography, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Furthermore, we measured composite sorption capacities of up to 0.62 mol CO
kg
and recorded breakthrough curves in a flow-through, fixed-bed reactor using both simulated biogas and locally sourced industrial biogas. Additional tests of the composite sorbent were carried out with pure CO
in a sealed pressure drop apparatus. This experimental data was used to validate a numerical model of the setup and to simulate an industrial-scale biogas upgrading process. Finally, we performed a preliminary technoeconomic analysis for this upgrading process and found that this composite sorbent can upgrade biogas at a lower cost (∼$0.97 per GJ) than other currently implemented techniques.</description><subject>Air stripping</subject><subject>Biogas</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Emissions control</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Extrusion</subject><subject>Gas pipelines</subject><subject>Mathematical models</subject><subject>Natural gas</subject><subject>Numerical models</subject><subject>Pressure drop</subject><subject>Regeneration</subject><subject>Scanning electron microscopy</subject><subject>Selectivity</subject><subject>Silicones</subject><subject>Sodium</subject><subject>Sodium carbonate</subject><subject>Sorbents</subject><subject>Sorption</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Upgrading</subject><subject>X-ray diffraction</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkb1P5DAQxS3ECRbuajoUQUOTZcaOE7uEZfmQkO6kA-mqsxzHWYySeLGTgv8er3ahoBqN5jdPb-YRcoIwR6B4qU2c2zjOwQBWnO-RGXIKORcc98kMAFkuWfnvkBzF-AoAlIE4IIeMsqrgks7I_6eXYG1-43o7ROcH3WV_ghtGXXc2--sbN_XZQoc6TUabLXy_9tGNm1Go7TDGrPUhW7atMy612bXzKx2z5_Uq6MYNq5_kR6u7aH_t6jF5vl0-Le7zx993D4urx9wwycZcipIa2oAApMlvw23FURRSWwTTVHXZgC6EkU2diLISVgtkKJG3mvF0FDsmZ1tdH0enokkWzYvxw2DNqLBkWJRVgi620Dr4tym9TfUuGtt1erB-iooyKQUTnIuEnn9DX_0U0ncSVSAIVlBOE3W5pUzwMQbbqnVwvQ7vCkFt8lEpH7XZ3uWTNk53ulPd2-aL_wyEfQDvNotE</recordid><startdate>20200602</startdate><enddate>20200602</enddate><creator>Murialdo, Maxwell</creator><creator>Goldstein, Hannah M</creator><creator>Stolaroff, Joshuah K</creator><creator>Nguyen, Du T</creator><creator>McCoy, Sean T</creator><creator>Bourcier, William L</creator><creator>Cerón, Maira R</creator><creator>Knipe, Jennifer M</creator><creator>Worthington, Matthew A</creator><creator>Smith, Megan M</creator><creator>Aines, Roger D</creator><creator>Baker, Sarah E</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3611-6796</orcidid><orcidid>https://orcid.org/0000-0003-0401-893X</orcidid><orcidid>https://orcid.org/0000-0001-9544-0444</orcidid><orcidid>https://orcid.org/0000-0001-5509-3345</orcidid><orcidid>https://orcid.org/0000-0002-5151-0479</orcidid><orcidid>https://orcid.org/0000000251510479</orcidid><orcidid>https://orcid.org/0000000195440444</orcidid><orcidid>https://orcid.org/0000000155093345</orcidid><orcidid>https://orcid.org/0000000336116796</orcidid><orcidid>https://orcid.org/000000030401893X</orcidid></search><sort><creationdate>20200602</creationdate><title>Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading</title><author>Murialdo, Maxwell ; Goldstein, Hannah M ; Stolaroff, Joshuah K ; Nguyen, Du T ; McCoy, Sean T ; Bourcier, William L ; Cerón, Maira R ; Knipe, Jennifer M ; Worthington, Matthew A ; Smith, Megan M ; Aines, Roger D ; Baker, Sarah E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-9862c2d08012936d5e751849ae10cd7b6d0a48c9db801678ea8131915fa350233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air stripping</topic><topic>Biogas</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Emissions control</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Extrusion</topic><topic>Gas pipelines</topic><topic>Mathematical models</topic><topic>Natural gas</topic><topic>Numerical models</topic><topic>Pressure drop</topic><topic>Regeneration</topic><topic>Scanning electron microscopy</topic><topic>Selectivity</topic><topic>Silicones</topic><topic>Sodium</topic><topic>Sodium carbonate</topic><topic>Sorbents</topic><topic>Sorption</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Upgrading</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murialdo, Maxwell</creatorcontrib><creatorcontrib>Goldstein, Hannah M</creatorcontrib><creatorcontrib>Stolaroff, Joshuah K</creatorcontrib><creatorcontrib>Nguyen, Du T</creatorcontrib><creatorcontrib>McCoy, Sean T</creatorcontrib><creatorcontrib>Bourcier, William L</creatorcontrib><creatorcontrib>Cerón, Maira R</creatorcontrib><creatorcontrib>Knipe, Jennifer M</creatorcontrib><creatorcontrib>Worthington, Matthew A</creatorcontrib><creatorcontrib>Smith, Megan M</creatorcontrib><creatorcontrib>Aines, Roger D</creatorcontrib><creatorcontrib>Baker, Sarah E</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>University of California, Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murialdo, Maxwell</au><au>Goldstein, Hannah M</au><au>Stolaroff, Joshuah K</au><au>Nguyen, Du T</au><au>McCoy, Sean T</au><au>Bourcier, William L</au><au>Cerón, Maira R</au><au>Knipe, Jennifer M</au><au>Worthington, Matthew A</au><au>Smith, Megan M</au><au>Aines, Roger D</au><au>Baker, Sarah E</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><aucorp>University of California, Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ Sci Technol</addtitle><date>2020-06-02</date><risdate>2020</risdate><volume>54</volume><issue>11</issue><spage>6900</spage><epage>6907</epage><pages>6900-6907</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO
) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific CO
sorption rates (in excess of 5 μmol s
g
bar
) and high selectivity due to their chemical mechanism, and can be regenerated with low-energy air stripping. Therefore, these composite sorbents combine the high selectivity of liquid sorbents with the high specific sorption rates and low regeneration energies found in many solid sorbents. We characterized these composite sorbents with X-ray computed tomography, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Furthermore, we measured composite sorption capacities of up to 0.62 mol CO
kg
and recorded breakthrough curves in a flow-through, fixed-bed reactor using both simulated biogas and locally sourced industrial biogas. Additional tests of the composite sorbent were carried out with pure CO
in a sealed pressure drop apparatus. This experimental data was used to validate a numerical model of the setup and to simulate an industrial-scale biogas upgrading process. Finally, we performed a preliminary technoeconomic analysis for this upgrading process and found that this composite sorbent can upgrade biogas at a lower cost (∼$0.97 per GJ) than other currently implemented techniques.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32374592</pmid><doi>10.1021/acs.est.0c01755</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3611-6796</orcidid><orcidid>https://orcid.org/0000-0003-0401-893X</orcidid><orcidid>https://orcid.org/0000-0001-9544-0444</orcidid><orcidid>https://orcid.org/0000-0001-5509-3345</orcidid><orcidid>https://orcid.org/0000-0002-5151-0479</orcidid><orcidid>https://orcid.org/0000000251510479</orcidid><orcidid>https://orcid.org/0000000195440444</orcidid><orcidid>https://orcid.org/0000000155093345</orcidid><orcidid>https://orcid.org/0000000336116796</orcidid><orcidid>https://orcid.org/000000030401893X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-06, Vol.54 (11), p.6900-6907 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_osti_scitechconnect_1631467 |
source | American Chemical Society Journals |
subjects | Air stripping Biogas Carbon dioxide Carbon sequestration Computed tomography Computer simulation Emissions control ENVIRONMENTAL SCIENCES Extrusion Gas pipelines Mathematical models Natural gas Numerical models Pressure drop Regeneration Scanning electron microscopy Selectivity Silicones Sodium Sodium carbonate Sorbents Sorption Three dimensional composites Three dimensional printing Upgrading X-ray diffraction |
title | Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Printable%20Sodium%20Carbonate%20Composite%20Sorbents%20for%20Efficient%20Biogas%20Upgrading&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Murialdo,%20Maxwell&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-06-02&rft.volume=54&rft.issue=11&rft.spage=6900&rft.epage=6907&rft.pages=6900-6907&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c01755&rft_dat=%3Cproquest_osti_%3E2399838558%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410834252&rft_id=info:pmid/32374592&rfr_iscdi=true |