Total internal reflection enabled wide-field coherent anti-Stokes Raman scattering microscopy
Wide-field coherent anti-Stokes Raman scattering (CARS) microscopy offers an attractive means for the rapid and simultaneous acquisition of vibrationally resolved images across a large field of view. A major challenge in the implementation lies in how to achieve sufficiently strong excitation fields...
Gespeichert in:
Veröffentlicht in: | Optics letters 2020-06, Vol.45 (11), p.3087 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wide-field coherent anti-Stokes Raman scattering (CARS) microscopy offers an attractive means for the rapid and simultaneous acquisition of vibrationally resolved images across a large field of view. A major challenge in the implementation lies in how to achieve sufficiently strong excitation fields necessary to drive the third-order optical responses over the large focal region. Here, we report a new wide-field CARS microscope enabled by a total internal reflection excitation scheme using a femtosecond Ti:Sapphire oscillator to generate pump and broadband near-infrared Stokes pulses. The spectrally broad Stokes pulse, in combination with its inherent chirp, offers not only access to a wide range of Raman modes spanning ∼ 1000 to ∼ 3500 c m − 1 but also a straightforward means to select vibrational transitions within this range by simply varying the time delay between the pulses. The unique capabilities of this wide-field CARS microscope were validated by acquiring high-quality CARS images from the model and complex biological samples on conventional microscope coverslips. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.390699 |