Linear two-pool models are insufficient to infer soil organic matter decomposition temperature sensitivity from incubations
Terrestrial carbon (C)-climate feedbacks depend strongly on how soil organic matter (SOM) decomposition responds to temperature. This dependency is often represented in land models by the parameter Q₁₀, which quantifies the relative increase of microbial soil respiration per 10 °C temperature increa...
Gespeichert in:
Veröffentlicht in: | Biogeochemistry 2020-07, Vol.149 (3), p.251-261 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | 3 |
container_start_page | 251 |
container_title | Biogeochemistry |
container_volume | 149 |
creator | Tang, Jinyun Riley, William J. |
description | Terrestrial carbon (C)-climate feedbacks depend strongly on how soil organic matter (SOM) decomposition responds to temperature. This dependency is often represented in land models by the parameter Q₁₀, which quantifies the relative increase of microbial soil respiration per 10 °C temperature increase. Many studies have conducted paired laboratory soil incubations and inferred “active” and “slow” pool Q₁₀ values by fitting linear two-pool models to measured respiration time series. Using a recently published incubation study (Qin et al. in Sci Adv 5(7):eaau1218, 2019) as an example, here we first show that the very high parametric equifinality of the linear two-pool models may render such incubationbased Q₁₀ estimates unreliable. In particular, we show that, accompanied by the uncertain initial active pool size, the slow pool Q₁₀ can span a very wide range, including values as high as 100, although all parameter combinations are producing almost equally good model fit with respect to the observations. This result is robust whether or not interactions between the active and slow pools are considered (typically these interactions are not considered when interpreting incubation data, but are part of the predictive soil carbon models). This very large parametric equifinality in the context of interpreting incubation data is consistent with the poor temporal extrapolation capability of linear multi-pool models identified in recent studies. Next, using a microbe-explicit SOM model (RESOM), we show that the inferred two pools and their associated parameters (e.g., Q₁₀) could be artificial constructs and are therefore unreliable concepts for integration into predictive models. We finally discuss uncertainties in applying linear two-pool (or more generally multiple-pool) models to estimate SOM decomposition parameters such as temperature sensitivities from laboratory incubations. We also propose new observations and model structures that could enable better process understanding and more robust predictive capabilities of soil carbon dynamics. |
doi_str_mv | 10.1007/s10533-020-00678-3 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1630347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48728515</jstor_id><sourcerecordid>48728515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-4b161bd82b236f43a0baa466228aef707532a877955f36ef67725b328ff761263</originalsourceid><addsrcrecordid>eNp9kc2KFDEURgtRsB19AUEIui69yc1fL2VwVGhwo-AupNLJmKYrKZOUMvjypi3R3axCLuf7cskZhucUXlMA9aZSEIgjMBgBpNIjPhh2VCgcBRVfHw47oFKPTEh8PDyp9QQAewW4G34dYvK2kPYzj0vOZzLnoz9XYosnMdU1hOiiT4203O_BF1JzPJNcbm2Kjsy2tT47epfnJdfYYk6k-Xnxxba1d1SfLtMfsd2RUPLcS9w62QtXnw6Pgj1X_-zveTV8uXn3-frDePj0_uP128PoOIc28olKOh01mxjKwNHCZC2XkjFtfVCgBDKrldoLEVD6IJViYkKmQ1CSMolXw8utN9cWTXWxeffN5ZS8a4ZKBOSqQ682aCn5--prM6e8ltT3MkzBXgNjEu6lOEPE_qm8U2yjXMm1Fh_MUuJsy52hYC6-zObLdF_mjy-DPYRbqHY43fryv_re1Istdaotl3_vcK2Y7urxN2PQopg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423337034</pqid></control><display><type>article</type><title>Linear two-pool models are insufficient to infer soil organic matter decomposition temperature sensitivity from incubations</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tang, Jinyun ; Riley, William J.</creator><creatorcontrib>Tang, Jinyun ; Riley, William J. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Terrestrial carbon (C)-climate feedbacks depend strongly on how soil organic matter (SOM) decomposition responds to temperature. This dependency is often represented in land models by the parameter Q₁₀, which quantifies the relative increase of microbial soil respiration per 10 °C temperature increase. Many studies have conducted paired laboratory soil incubations and inferred “active” and “slow” pool Q₁₀ values by fitting linear two-pool models to measured respiration time series. Using a recently published incubation study (Qin et al. in Sci Adv 5(7):eaau1218, 2019) as an example, here we first show that the very high parametric equifinality of the linear two-pool models may render such incubationbased Q₁₀ estimates unreliable. In particular, we show that, accompanied by the uncertain initial active pool size, the slow pool Q₁₀ can span a very wide range, including values as high as 100, although all parameter combinations are producing almost equally good model fit with respect to the observations. This result is robust whether or not interactions between the active and slow pools are considered (typically these interactions are not considered when interpreting incubation data, but are part of the predictive soil carbon models). This very large parametric equifinality in the context of interpreting incubation data is consistent with the poor temporal extrapolation capability of linear multi-pool models identified in recent studies. Next, using a microbe-explicit SOM model (RESOM), we show that the inferred two pools and their associated parameters (e.g., Q₁₀) could be artificial constructs and are therefore unreliable concepts for integration into predictive models. We finally discuss uncertainties in applying linear two-pool (or more generally multiple-pool) models to estimate SOM decomposition parameters such as temperature sensitivities from laboratory incubations. We also propose new observations and model structures that could enable better process understanding and more robust predictive capabilities of soil carbon dynamics.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-020-00678-3</identifier><language>eng</language><publisher>Cham: Springer Science + Business Media</publisher><subject>BIOGEOCHEMISTRY LETTERS ; Biogeosciences ; Carbon ; Decomposition ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Environmental Chemistry ; ENVIRONMENTAL SCIENCES ; equifinality ; Incubation period ; Laboratories ; laboratory incubation ; Life Sciences ; Mathematical models ; Microorganisms ; Organic matter ; Organic soils ; Parameter estimation ; Parameter sensitivity ; Parameters ; Prediction models ; Respiration ; Robustness ; Sensitivity ; Soil ; Soil dynamics ; Soil organic matter ; soil respiration ; Soil temperature ; Soils ; Temperature ; Temperature dependence ; Temperature sensitivity ; two-pool models</subject><ispartof>Biogeochemistry, 2020-07, Vol.149 (3), p.251-261</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. corrected publication 2022</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-4b161bd82b236f43a0baa466228aef707532a877955f36ef67725b328ff761263</citedby><cites>FETCH-LOGICAL-c440t-4b161bd82b236f43a0baa466228aef707532a877955f36ef67725b328ff761263</cites><orcidid>0000-0002-4615-2304 ; 0000-0002-4792-1259 ; 0000000247921259 ; 0000000246152304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48728515$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48728515$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1630347$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Jinyun</creatorcontrib><creatorcontrib>Riley, William J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Linear two-pool models are insufficient to infer soil organic matter decomposition temperature sensitivity from incubations</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>Terrestrial carbon (C)-climate feedbacks depend strongly on how soil organic matter (SOM) decomposition responds to temperature. This dependency is often represented in land models by the parameter Q₁₀, which quantifies the relative increase of microbial soil respiration per 10 °C temperature increase. Many studies have conducted paired laboratory soil incubations and inferred “active” and “slow” pool Q₁₀ values by fitting linear two-pool models to measured respiration time series. Using a recently published incubation study (Qin et al. in Sci Adv 5(7):eaau1218, 2019) as an example, here we first show that the very high parametric equifinality of the linear two-pool models may render such incubationbased Q₁₀ estimates unreliable. In particular, we show that, accompanied by the uncertain initial active pool size, the slow pool Q₁₀ can span a very wide range, including values as high as 100, although all parameter combinations are producing almost equally good model fit with respect to the observations. This result is robust whether or not interactions between the active and slow pools are considered (typically these interactions are not considered when interpreting incubation data, but are part of the predictive soil carbon models). This very large parametric equifinality in the context of interpreting incubation data is consistent with the poor temporal extrapolation capability of linear multi-pool models identified in recent studies. Next, using a microbe-explicit SOM model (RESOM), we show that the inferred two pools and their associated parameters (e.g., Q₁₀) could be artificial constructs and are therefore unreliable concepts for integration into predictive models. We finally discuss uncertainties in applying linear two-pool (or more generally multiple-pool) models to estimate SOM decomposition parameters such as temperature sensitivities from laboratory incubations. We also propose new observations and model structures that could enable better process understanding and more robust predictive capabilities of soil carbon dynamics.</description><subject>BIOGEOCHEMISTRY LETTERS</subject><subject>Biogeosciences</subject><subject>Carbon</subject><subject>Decomposition</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environmental Chemistry</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>equifinality</subject><subject>Incubation period</subject><subject>Laboratories</subject><subject>laboratory incubation</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Microorganisms</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Parameter estimation</subject><subject>Parameter sensitivity</subject><subject>Parameters</subject><subject>Prediction models</subject><subject>Respiration</subject><subject>Robustness</subject><subject>Sensitivity</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil organic matter</subject><subject>soil respiration</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature sensitivity</subject><subject>two-pool models</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc2KFDEURgtRsB19AUEIui69yc1fL2VwVGhwo-AupNLJmKYrKZOUMvjypi3R3axCLuf7cskZhucUXlMA9aZSEIgjMBgBpNIjPhh2VCgcBRVfHw47oFKPTEh8PDyp9QQAewW4G34dYvK2kPYzj0vOZzLnoz9XYosnMdU1hOiiT4203O_BF1JzPJNcbm2Kjsy2tT47epfnJdfYYk6k-Xnxxba1d1SfLtMfsd2RUPLcS9w62QtXnw6Pgj1X_-zveTV8uXn3-frDePj0_uP128PoOIc28olKOh01mxjKwNHCZC2XkjFtfVCgBDKrldoLEVD6IJViYkKmQ1CSMolXw8utN9cWTXWxeffN5ZS8a4ZKBOSqQ682aCn5--prM6e8ltT3MkzBXgNjEu6lOEPE_qm8U2yjXMm1Fh_MUuJsy52hYC6-zObLdF_mjy-DPYRbqHY43fryv_re1Istdaotl3_vcK2Y7urxN2PQopg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Tang, Jinyun</creator><creator>Riley, William J.</creator><general>Springer Science + Business Media</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4615-2304</orcidid><orcidid>https://orcid.org/0000-0002-4792-1259</orcidid><orcidid>https://orcid.org/0000000247921259</orcidid><orcidid>https://orcid.org/0000000246152304</orcidid></search><sort><creationdate>20200701</creationdate><title>Linear two-pool models are insufficient to infer soil organic matter decomposition temperature sensitivity from incubations</title><author>Tang, Jinyun ; Riley, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-4b161bd82b236f43a0baa466228aef707532a877955f36ef67725b328ff761263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BIOGEOCHEMISTRY LETTERS</topic><topic>Biogeosciences</topic><topic>Carbon</topic><topic>Decomposition</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environmental Chemistry</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>equifinality</topic><topic>Incubation period</topic><topic>Laboratories</topic><topic>laboratory incubation</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Microorganisms</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Parameter estimation</topic><topic>Parameter sensitivity</topic><topic>Parameters</topic><topic>Prediction models</topic><topic>Respiration</topic><topic>Robustness</topic><topic>Sensitivity</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil organic matter</topic><topic>soil respiration</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature sensitivity</topic><topic>two-pool models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Jinyun</creatorcontrib><creatorcontrib>Riley, William J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Jinyun</au><au>Riley, William J.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear two-pool models are insufficient to infer soil organic matter decomposition temperature sensitivity from incubations</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>149</volume><issue>3</issue><spage>251</spage><epage>261</epage><pages>251-261</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>Terrestrial carbon (C)-climate feedbacks depend strongly on how soil organic matter (SOM) decomposition responds to temperature. This dependency is often represented in land models by the parameter Q₁₀, which quantifies the relative increase of microbial soil respiration per 10 °C temperature increase. Many studies have conducted paired laboratory soil incubations and inferred “active” and “slow” pool Q₁₀ values by fitting linear two-pool models to measured respiration time series. Using a recently published incubation study (Qin et al. in Sci Adv 5(7):eaau1218, 2019) as an example, here we first show that the very high parametric equifinality of the linear two-pool models may render such incubationbased Q₁₀ estimates unreliable. In particular, we show that, accompanied by the uncertain initial active pool size, the slow pool Q₁₀ can span a very wide range, including values as high as 100, although all parameter combinations are producing almost equally good model fit with respect to the observations. This result is robust whether or not interactions between the active and slow pools are considered (typically these interactions are not considered when interpreting incubation data, but are part of the predictive soil carbon models). This very large parametric equifinality in the context of interpreting incubation data is consistent with the poor temporal extrapolation capability of linear multi-pool models identified in recent studies. Next, using a microbe-explicit SOM model (RESOM), we show that the inferred two pools and their associated parameters (e.g., Q₁₀) could be artificial constructs and are therefore unreliable concepts for integration into predictive models. We finally discuss uncertainties in applying linear two-pool (or more generally multiple-pool) models to estimate SOM decomposition parameters such as temperature sensitivities from laboratory incubations. We also propose new observations and model structures that could enable better process understanding and more robust predictive capabilities of soil carbon dynamics.</abstract><cop>Cham</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10533-020-00678-3</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4615-2304</orcidid><orcidid>https://orcid.org/0000-0002-4792-1259</orcidid><orcidid>https://orcid.org/0000000247921259</orcidid><orcidid>https://orcid.org/0000000246152304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-2563 |
ispartof | Biogeochemistry, 2020-07, Vol.149 (3), p.251-261 |
issn | 0168-2563 1573-515X |
language | eng |
recordid | cdi_osti_scitechconnect_1630347 |
source | Jstor Complete Legacy; SpringerLink Journals - AutoHoldings |
subjects | BIOGEOCHEMISTRY LETTERS Biogeosciences Carbon Decomposition Earth and Environmental Science Earth Sciences Ecosystems Environmental Chemistry ENVIRONMENTAL SCIENCES equifinality Incubation period Laboratories laboratory incubation Life Sciences Mathematical models Microorganisms Organic matter Organic soils Parameter estimation Parameter sensitivity Parameters Prediction models Respiration Robustness Sensitivity Soil Soil dynamics Soil organic matter soil respiration Soil temperature Soils Temperature Temperature dependence Temperature sensitivity two-pool models |
title | Linear two-pool models are insufficient to infer soil organic matter decomposition temperature sensitivity from incubations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20two-pool%20models%20are%20insufficient%20to%20infer%20soil%20organic%20matter%20decomposition%20temperature%20sensitivity%20from%20incubations&rft.jtitle=Biogeochemistry&rft.au=Tang,%20Jinyun&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2020-07-01&rft.volume=149&rft.issue=3&rft.spage=251&rft.epage=261&rft.pages=251-261&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-020-00678-3&rft_dat=%3Cjstor_osti_%3E48728515%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2423337034&rft_id=info:pmid/&rft_jstor_id=48728515&rfr_iscdi=true |