Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate

Two‐dimensional (2D) organic‐inorganic hybrid materials are currently of great interest for applications in electronics and optoelectronics. Here, the synthesis and optical properties of a new type of halide‐organothiolate‐mixed 2D hybrid material, Pb2X(S‐C6H5)3, are reported, in which X is a halide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2020-05, Vol.26 (29), p.6599-6607
Hauptverfasser: Coffey, Aidan H., Yoo, Pilsun, Kim, Dong Hee, Akriti, Zeller, Matthias, Avetian, Sona, Huang, Libai, Liao, Peilin, Dou, Letian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6607
container_issue 29
container_start_page 6599
container_title Chemistry : a European journal
container_volume 26
creator Coffey, Aidan H.
Yoo, Pilsun
Kim, Dong Hee
Akriti
Zeller, Matthias
Avetian, Sona
Huang, Libai
Liao, Peilin
Dou, Letian
description Two‐dimensional (2D) organic‐inorganic hybrid materials are currently of great interest for applications in electronics and optoelectronics. Here, the synthesis and optical properties of a new type of halide‐organothiolate‐mixed 2D hybrid material, Pb2X(S‐C6H5)3, are reported, in which X is a halide (I, Br, or Cl). Different from conventional lead‐based 2D layered materials, these compounds feature unusual five‐coordinated lead centers with a stereochemically active electron lone pair on the lead atoms and four‐coordinated iodine atoms. The Pb2X(S‐C6H5)3 materials feature an indirect bandgap, strongly emissive long‐lived self‐trap states, and an extremely large Stokes shift. Interestingly, the optical bandgap of the materials can be tuned through variation of the halides; however, the photoluminescence is less sensitive to the composition and is more likely dominated by lead‐sulfur lattice interactions or the lead lone‐pair electrons. Our results support that a halide–organothiolate mixed anion hybrid structure offers a unique platform for discovering new exciting 2D electronic materials. A new 2D hybrid material, Pb2X(S‐C6H5)3 (X=I, Br, or Cl), was synthesized and characterized with experimental and computational methods. These materials feature strong absorption, an extremely large Stokes Shift, and long carrier lifetimes. Interestingly, the bandgap can be tuned by choice of halide, with little to no effect on the photoluminescent emission.
doi_str_mv 10.1002/chem.201905790
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1630224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404564575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3810-6daf7eb629e9784e484e5d266f7f0abed39a153ca5df5a564698df5e796dc0563</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqWwMkcwp9hx7NQjlEKRihgIs-U6F9VVahfboSoTP4HfyC8hVRCMDKe7k773pPcQOid4RDDOrvQS1qMME4FZIfABGhCWkZQWnB2iARZ5kXJGxTE6CWGFMRac0gEqn6NvdWy9apKytWphGhN3ibJVcmvewIf95-qk3Lqvj89bswYbjLMdPQdVJTPVmAqSG7DvYCEujWtUhFN0VKsmwNnPHqKXu2k5maXzp_uHyfU81XRMcMorVRew4JkAUYxzyLthVcZ5XdRYLaCiQhFGtWJVzRTjORfj7oJC8EpjxukQXfS-LkQjgzYR9FI7a0FHSTjFWZZ30GUPbbx7bSFEuXKt7xIEmeU472xZwTpq1FPauxA81HLjzVr5nSRY7uuV-3rlb72dQPSCrWlg9w8tJ7Pp45_2G4gmf9c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404564575</pqid></control><display><type>article</type><title>Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Coffey, Aidan H. ; Yoo, Pilsun ; Kim, Dong Hee ; Akriti ; Zeller, Matthias ; Avetian, Sona ; Huang, Libai ; Liao, Peilin ; Dou, Letian</creator><creatorcontrib>Coffey, Aidan H. ; Yoo, Pilsun ; Kim, Dong Hee ; Akriti ; Zeller, Matthias ; Avetian, Sona ; Huang, Libai ; Liao, Peilin ; Dou, Letian</creatorcontrib><description>Two‐dimensional (2D) organic‐inorganic hybrid materials are currently of great interest for applications in electronics and optoelectronics. Here, the synthesis and optical properties of a new type of halide‐organothiolate‐mixed 2D hybrid material, Pb2X(S‐C6H5)3, are reported, in which X is a halide (I, Br, or Cl). Different from conventional lead‐based 2D layered materials, these compounds feature unusual five‐coordinated lead centers with a stereochemically active electron lone pair on the lead atoms and four‐coordinated iodine atoms. The Pb2X(S‐C6H5)3 materials feature an indirect bandgap, strongly emissive long‐lived self‐trap states, and an extremely large Stokes shift. Interestingly, the optical bandgap of the materials can be tuned through variation of the halides; however, the photoluminescence is less sensitive to the composition and is more likely dominated by lead‐sulfur lattice interactions or the lead lone‐pair electrons. Our results support that a halide–organothiolate mixed anion hybrid structure offers a unique platform for discovering new exciting 2D electronic materials. A new 2D hybrid material, Pb2X(S‐C6H5)3 (X=I, Br, or Cl), was synthesized and characterized with experimental and computational methods. These materials feature strong absorption, an extremely large Stokes Shift, and long carrier lifetimes. Interestingly, the bandgap can be tuned by choice of halide, with little to no effect on the photoluminescent emission.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201905790</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Chemistry ; Electronic materials ; electronic structures ; Energy gap ; Halides ; Hybrid structures ; Iodine ; layered compounds ; Layered materials ; Lead compounds ; lead halides ; Metal halides ; Optical properties ; Optoelectronics ; Photoluminescence ; Photons ; S ligands ; Sulfur</subject><ispartof>Chemistry : a European journal, 2020-05, Vol.26 (29), p.6599-6607</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3810-6daf7eb629e9784e484e5d266f7f0abed39a153ca5df5a564698df5e796dc0563</citedby><cites>FETCH-LOGICAL-c3810-6daf7eb629e9784e484e5d266f7f0abed39a153ca5df5a564698df5e796dc0563</cites><orcidid>0000-0001-6411-8591 ; 0000000164118591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201905790$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201905790$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1630224$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Coffey, Aidan H.</creatorcontrib><creatorcontrib>Yoo, Pilsun</creatorcontrib><creatorcontrib>Kim, Dong Hee</creatorcontrib><creatorcontrib>Akriti</creatorcontrib><creatorcontrib>Zeller, Matthias</creatorcontrib><creatorcontrib>Avetian, Sona</creatorcontrib><creatorcontrib>Huang, Libai</creatorcontrib><creatorcontrib>Liao, Peilin</creatorcontrib><creatorcontrib>Dou, Letian</creatorcontrib><title>Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate</title><title>Chemistry : a European journal</title><description>Two‐dimensional (2D) organic‐inorganic hybrid materials are currently of great interest for applications in electronics and optoelectronics. Here, the synthesis and optical properties of a new type of halide‐organothiolate‐mixed 2D hybrid material, Pb2X(S‐C6H5)3, are reported, in which X is a halide (I, Br, or Cl). Different from conventional lead‐based 2D layered materials, these compounds feature unusual five‐coordinated lead centers with a stereochemically active electron lone pair on the lead atoms and four‐coordinated iodine atoms. The Pb2X(S‐C6H5)3 materials feature an indirect bandgap, strongly emissive long‐lived self‐trap states, and an extremely large Stokes shift. Interestingly, the optical bandgap of the materials can be tuned through variation of the halides; however, the photoluminescence is less sensitive to the composition and is more likely dominated by lead‐sulfur lattice interactions or the lead lone‐pair electrons. Our results support that a halide–organothiolate mixed anion hybrid structure offers a unique platform for discovering new exciting 2D electronic materials. A new 2D hybrid material, Pb2X(S‐C6H5)3 (X=I, Br, or Cl), was synthesized and characterized with experimental and computational methods. These materials feature strong absorption, an extremely large Stokes Shift, and long carrier lifetimes. Interestingly, the bandgap can be tuned by choice of halide, with little to no effect on the photoluminescent emission.</description><subject>2D materials</subject><subject>Chemistry</subject><subject>Electronic materials</subject><subject>electronic structures</subject><subject>Energy gap</subject><subject>Halides</subject><subject>Hybrid structures</subject><subject>Iodine</subject><subject>layered compounds</subject><subject>Layered materials</subject><subject>Lead compounds</subject><subject>lead halides</subject><subject>Metal halides</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>S ligands</subject><subject>Sulfur</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqWwMkcwp9hx7NQjlEKRihgIs-U6F9VVahfboSoTP4HfyC8hVRCMDKe7k773pPcQOid4RDDOrvQS1qMME4FZIfABGhCWkZQWnB2iARZ5kXJGxTE6CWGFMRac0gEqn6NvdWy9apKytWphGhN3ibJVcmvewIf95-qk3Lqvj89bswYbjLMdPQdVJTPVmAqSG7DvYCEujWtUhFN0VKsmwNnPHqKXu2k5maXzp_uHyfU81XRMcMorVRew4JkAUYxzyLthVcZ5XdRYLaCiQhFGtWJVzRTjORfj7oJC8EpjxukQXfS-LkQjgzYR9FI7a0FHSTjFWZZ30GUPbbx7bSFEuXKt7xIEmeU472xZwTpq1FPauxA81HLjzVr5nSRY7uuV-3rlb72dQPSCrWlg9w8tJ7Pp45_2G4gmf9c</recordid><startdate>20200520</startdate><enddate>20200520</enddate><creator>Coffey, Aidan H.</creator><creator>Yoo, Pilsun</creator><creator>Kim, Dong Hee</creator><creator>Akriti</creator><creator>Zeller, Matthias</creator><creator>Avetian, Sona</creator><creator>Huang, Libai</creator><creator>Liao, Peilin</creator><creator>Dou, Letian</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6411-8591</orcidid><orcidid>https://orcid.org/0000000164118591</orcidid></search><sort><creationdate>20200520</creationdate><title>Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate</title><author>Coffey, Aidan H. ; Yoo, Pilsun ; Kim, Dong Hee ; Akriti ; Zeller, Matthias ; Avetian, Sona ; Huang, Libai ; Liao, Peilin ; Dou, Letian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3810-6daf7eb629e9784e484e5d266f7f0abed39a153ca5df5a564698df5e796dc0563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D materials</topic><topic>Chemistry</topic><topic>Electronic materials</topic><topic>electronic structures</topic><topic>Energy gap</topic><topic>Halides</topic><topic>Hybrid structures</topic><topic>Iodine</topic><topic>layered compounds</topic><topic>Layered materials</topic><topic>Lead compounds</topic><topic>lead halides</topic><topic>Metal halides</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>S ligands</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coffey, Aidan H.</creatorcontrib><creatorcontrib>Yoo, Pilsun</creatorcontrib><creatorcontrib>Kim, Dong Hee</creatorcontrib><creatorcontrib>Akriti</creatorcontrib><creatorcontrib>Zeller, Matthias</creatorcontrib><creatorcontrib>Avetian, Sona</creatorcontrib><creatorcontrib>Huang, Libai</creatorcontrib><creatorcontrib>Liao, Peilin</creatorcontrib><creatorcontrib>Dou, Letian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>OSTI.GOV</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coffey, Aidan H.</au><au>Yoo, Pilsun</au><au>Kim, Dong Hee</au><au>Akriti</au><au>Zeller, Matthias</au><au>Avetian, Sona</au><au>Huang, Libai</au><au>Liao, Peilin</au><au>Dou, Letian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate</atitle><jtitle>Chemistry : a European journal</jtitle><date>2020-05-20</date><risdate>2020</risdate><volume>26</volume><issue>29</issue><spage>6599</spage><epage>6607</epage><pages>6599-6607</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Two‐dimensional (2D) organic‐inorganic hybrid materials are currently of great interest for applications in electronics and optoelectronics. Here, the synthesis and optical properties of a new type of halide‐organothiolate‐mixed 2D hybrid material, Pb2X(S‐C6H5)3, are reported, in which X is a halide (I, Br, or Cl). Different from conventional lead‐based 2D layered materials, these compounds feature unusual five‐coordinated lead centers with a stereochemically active electron lone pair on the lead atoms and four‐coordinated iodine atoms. The Pb2X(S‐C6H5)3 materials feature an indirect bandgap, strongly emissive long‐lived self‐trap states, and an extremely large Stokes shift. Interestingly, the optical bandgap of the materials can be tuned through variation of the halides; however, the photoluminescence is less sensitive to the composition and is more likely dominated by lead‐sulfur lattice interactions or the lead lone‐pair electrons. Our results support that a halide–organothiolate mixed anion hybrid structure offers a unique platform for discovering new exciting 2D electronic materials. A new 2D hybrid material, Pb2X(S‐C6H5)3 (X=I, Br, or Cl), was synthesized and characterized with experimental and computational methods. These materials feature strong absorption, an extremely large Stokes Shift, and long carrier lifetimes. Interestingly, the bandgap can be tuned by choice of halide, with little to no effect on the photoluminescent emission.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.201905790</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6411-8591</orcidid><orcidid>https://orcid.org/0000000164118591</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2020-05, Vol.26 (29), p.6599-6607
issn 0947-6539
1521-3765
language eng
recordid cdi_osti_scitechconnect_1630224
source Wiley Online Library Journals Frontfile Complete
subjects 2D materials
Chemistry
Electronic materials
electronic structures
Energy gap
Halides
Hybrid structures
Iodine
layered compounds
Layered materials
Lead compounds
lead halides
Metal halides
Optical properties
Optoelectronics
Photoluminescence
Photons
S ligands
Sulfur
title Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Tunability%20and%20Diversity%20of%20Two%E2%80%90Dimensional%20Lead%20Halide%20Benzenethiolate&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Coffey,%20Aidan%20H.&rft.date=2020-05-20&rft.volume=26&rft.issue=29&rft.spage=6599&rft.epage=6607&rft.pages=6599-6607&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201905790&rft_dat=%3Cproquest_osti_%3E2404564575%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404564575&rft_id=info:pmid/&rfr_iscdi=true