Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate
Two‐dimensional (2D) organic‐inorganic hybrid materials are currently of great interest for applications in electronics and optoelectronics. Here, the synthesis and optical properties of a new type of halide‐organothiolate‐mixed 2D hybrid material, Pb2X(S‐C6H5)3, are reported, in which X is a halide...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2020-05, Vol.26 (29), p.6599-6607 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6607 |
---|---|
container_issue | 29 |
container_start_page | 6599 |
container_title | Chemistry : a European journal |
container_volume | 26 |
creator | Coffey, Aidan H. Yoo, Pilsun Kim, Dong Hee Akriti Zeller, Matthias Avetian, Sona Huang, Libai Liao, Peilin Dou, Letian |
description | Two‐dimensional (2D) organic‐inorganic hybrid materials are currently of great interest for applications in electronics and optoelectronics. Here, the synthesis and optical properties of a new type of halide‐organothiolate‐mixed 2D hybrid material, Pb2X(S‐C6H5)3, are reported, in which X is a halide (I, Br, or Cl). Different from conventional lead‐based 2D layered materials, these compounds feature unusual five‐coordinated lead centers with a stereochemically active electron lone pair on the lead atoms and four‐coordinated iodine atoms. The Pb2X(S‐C6H5)3 materials feature an indirect bandgap, strongly emissive long‐lived self‐trap states, and an extremely large Stokes shift. Interestingly, the optical bandgap of the materials can be tuned through variation of the halides; however, the photoluminescence is less sensitive to the composition and is more likely dominated by lead‐sulfur lattice interactions or the lead lone‐pair electrons. Our results support that a halide–organothiolate mixed anion hybrid structure offers a unique platform for discovering new exciting 2D electronic materials.
A new 2D hybrid material, Pb2X(S‐C6H5)3 (X=I, Br, or Cl), was synthesized and characterized with experimental and computational methods. These materials feature strong absorption, an extremely large Stokes Shift, and long carrier lifetimes. Interestingly, the bandgap can be tuned by choice of halide, with little to no effect on the photoluminescent emission. |
doi_str_mv | 10.1002/chem.201905790 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1630224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2404564575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3810-6daf7eb629e9784e484e5d266f7f0abed39a153ca5df5a564698df5e796dc0563</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqWwMkcwp9hx7NQjlEKRihgIs-U6F9VVahfboSoTP4HfyC8hVRCMDKe7k773pPcQOid4RDDOrvQS1qMME4FZIfABGhCWkZQWnB2iARZ5kXJGxTE6CWGFMRac0gEqn6NvdWy9apKytWphGhN3ibJVcmvewIf95-qk3Lqvj89bswYbjLMdPQdVJTPVmAqSG7DvYCEujWtUhFN0VKsmwNnPHqKXu2k5maXzp_uHyfU81XRMcMorVRew4JkAUYxzyLthVcZ5XdRYLaCiQhFGtWJVzRTjORfj7oJC8EpjxukQXfS-LkQjgzYR9FI7a0FHSTjFWZZ30GUPbbx7bSFEuXKt7xIEmeU472xZwTpq1FPauxA81HLjzVr5nSRY7uuV-3rlb72dQPSCrWlg9w8tJ7Pp45_2G4gmf9c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404564575</pqid></control><display><type>article</type><title>Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Coffey, Aidan H. ; Yoo, Pilsun ; Kim, Dong Hee ; Akriti ; Zeller, Matthias ; Avetian, Sona ; Huang, Libai ; Liao, Peilin ; Dou, Letian</creator><creatorcontrib>Coffey, Aidan H. ; Yoo, Pilsun ; Kim, Dong Hee ; Akriti ; Zeller, Matthias ; Avetian, Sona ; Huang, Libai ; Liao, Peilin ; Dou, Letian</creatorcontrib><description>Two‐dimensional (2D) organic‐inorganic hybrid materials are currently of great interest for applications in electronics and optoelectronics. Here, the synthesis and optical properties of a new type of halide‐organothiolate‐mixed 2D hybrid material, Pb2X(S‐C6H5)3, are reported, in which X is a halide (I, Br, or Cl). Different from conventional lead‐based 2D layered materials, these compounds feature unusual five‐coordinated lead centers with a stereochemically active electron lone pair on the lead atoms and four‐coordinated iodine atoms. The Pb2X(S‐C6H5)3 materials feature an indirect bandgap, strongly emissive long‐lived self‐trap states, and an extremely large Stokes shift. Interestingly, the optical bandgap of the materials can be tuned through variation of the halides; however, the photoluminescence is less sensitive to the composition and is more likely dominated by lead‐sulfur lattice interactions or the lead lone‐pair electrons. Our results support that a halide–organothiolate mixed anion hybrid structure offers a unique platform for discovering new exciting 2D electronic materials.
A new 2D hybrid material, Pb2X(S‐C6H5)3 (X=I, Br, or Cl), was synthesized and characterized with experimental and computational methods. These materials feature strong absorption, an extremely large Stokes Shift, and long carrier lifetimes. Interestingly, the bandgap can be tuned by choice of halide, with little to no effect on the photoluminescent emission.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201905790</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Chemistry ; Electronic materials ; electronic structures ; Energy gap ; Halides ; Hybrid structures ; Iodine ; layered compounds ; Layered materials ; Lead compounds ; lead halides ; Metal halides ; Optical properties ; Optoelectronics ; Photoluminescence ; Photons ; S ligands ; Sulfur</subject><ispartof>Chemistry : a European journal, 2020-05, Vol.26 (29), p.6599-6607</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3810-6daf7eb629e9784e484e5d266f7f0abed39a153ca5df5a564698df5e796dc0563</citedby><cites>FETCH-LOGICAL-c3810-6daf7eb629e9784e484e5d266f7f0abed39a153ca5df5a564698df5e796dc0563</cites><orcidid>0000-0001-6411-8591 ; 0000000164118591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201905790$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201905790$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1630224$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Coffey, Aidan H.</creatorcontrib><creatorcontrib>Yoo, Pilsun</creatorcontrib><creatorcontrib>Kim, Dong Hee</creatorcontrib><creatorcontrib>Akriti</creatorcontrib><creatorcontrib>Zeller, Matthias</creatorcontrib><creatorcontrib>Avetian, Sona</creatorcontrib><creatorcontrib>Huang, Libai</creatorcontrib><creatorcontrib>Liao, Peilin</creatorcontrib><creatorcontrib>Dou, Letian</creatorcontrib><title>Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate</title><title>Chemistry : a European journal</title><description>Two‐dimensional (2D) organic‐inorganic hybrid materials are currently of great interest for applications in electronics and optoelectronics. Here, the synthesis and optical properties of a new type of halide‐organothiolate‐mixed 2D hybrid material, Pb2X(S‐C6H5)3, are reported, in which X is a halide (I, Br, or Cl). Different from conventional lead‐based 2D layered materials, these compounds feature unusual five‐coordinated lead centers with a stereochemically active electron lone pair on the lead atoms and four‐coordinated iodine atoms. The Pb2X(S‐C6H5)3 materials feature an indirect bandgap, strongly emissive long‐lived self‐trap states, and an extremely large Stokes shift. Interestingly, the optical bandgap of the materials can be tuned through variation of the halides; however, the photoluminescence is less sensitive to the composition and is more likely dominated by lead‐sulfur lattice interactions or the lead lone‐pair electrons. Our results support that a halide–organothiolate mixed anion hybrid structure offers a unique platform for discovering new exciting 2D electronic materials.
A new 2D hybrid material, Pb2X(S‐C6H5)3 (X=I, Br, or Cl), was synthesized and characterized with experimental and computational methods. These materials feature strong absorption, an extremely large Stokes Shift, and long carrier lifetimes. Interestingly, the bandgap can be tuned by choice of halide, with little to no effect on the photoluminescent emission.</description><subject>2D materials</subject><subject>Chemistry</subject><subject>Electronic materials</subject><subject>electronic structures</subject><subject>Energy gap</subject><subject>Halides</subject><subject>Hybrid structures</subject><subject>Iodine</subject><subject>layered compounds</subject><subject>Layered materials</subject><subject>Lead compounds</subject><subject>lead halides</subject><subject>Metal halides</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>S ligands</subject><subject>Sulfur</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqWwMkcwp9hx7NQjlEKRihgIs-U6F9VVahfboSoTP4HfyC8hVRCMDKe7k773pPcQOid4RDDOrvQS1qMME4FZIfABGhCWkZQWnB2iARZ5kXJGxTE6CWGFMRac0gEqn6NvdWy9apKytWphGhN3ibJVcmvewIf95-qk3Lqvj89bswYbjLMdPQdVJTPVmAqSG7DvYCEujWtUhFN0VKsmwNnPHqKXu2k5maXzp_uHyfU81XRMcMorVRew4JkAUYxzyLthVcZ5XdRYLaCiQhFGtWJVzRTjORfj7oJC8EpjxukQXfS-LkQjgzYR9FI7a0FHSTjFWZZ30GUPbbx7bSFEuXKt7xIEmeU472xZwTpq1FPauxA81HLjzVr5nSRY7uuV-3rlb72dQPSCrWlg9w8tJ7Pp45_2G4gmf9c</recordid><startdate>20200520</startdate><enddate>20200520</enddate><creator>Coffey, Aidan H.</creator><creator>Yoo, Pilsun</creator><creator>Kim, Dong Hee</creator><creator>Akriti</creator><creator>Zeller, Matthias</creator><creator>Avetian, Sona</creator><creator>Huang, Libai</creator><creator>Liao, Peilin</creator><creator>Dou, Letian</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6411-8591</orcidid><orcidid>https://orcid.org/0000000164118591</orcidid></search><sort><creationdate>20200520</creationdate><title>Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate</title><author>Coffey, Aidan H. ; Yoo, Pilsun ; Kim, Dong Hee ; Akriti ; Zeller, Matthias ; Avetian, Sona ; Huang, Libai ; Liao, Peilin ; Dou, Letian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3810-6daf7eb629e9784e484e5d266f7f0abed39a153ca5df5a564698df5e796dc0563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D materials</topic><topic>Chemistry</topic><topic>Electronic materials</topic><topic>electronic structures</topic><topic>Energy gap</topic><topic>Halides</topic><topic>Hybrid structures</topic><topic>Iodine</topic><topic>layered compounds</topic><topic>Layered materials</topic><topic>Lead compounds</topic><topic>lead halides</topic><topic>Metal halides</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>S ligands</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coffey, Aidan H.</creatorcontrib><creatorcontrib>Yoo, Pilsun</creatorcontrib><creatorcontrib>Kim, Dong Hee</creatorcontrib><creatorcontrib>Akriti</creatorcontrib><creatorcontrib>Zeller, Matthias</creatorcontrib><creatorcontrib>Avetian, Sona</creatorcontrib><creatorcontrib>Huang, Libai</creatorcontrib><creatorcontrib>Liao, Peilin</creatorcontrib><creatorcontrib>Dou, Letian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>OSTI.GOV</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coffey, Aidan H.</au><au>Yoo, Pilsun</au><au>Kim, Dong Hee</au><au>Akriti</au><au>Zeller, Matthias</au><au>Avetian, Sona</au><au>Huang, Libai</au><au>Liao, Peilin</au><au>Dou, Letian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate</atitle><jtitle>Chemistry : a European journal</jtitle><date>2020-05-20</date><risdate>2020</risdate><volume>26</volume><issue>29</issue><spage>6599</spage><epage>6607</epage><pages>6599-6607</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Two‐dimensional (2D) organic‐inorganic hybrid materials are currently of great interest for applications in electronics and optoelectronics. Here, the synthesis and optical properties of a new type of halide‐organothiolate‐mixed 2D hybrid material, Pb2X(S‐C6H5)3, are reported, in which X is a halide (I, Br, or Cl). Different from conventional lead‐based 2D layered materials, these compounds feature unusual five‐coordinated lead centers with a stereochemically active electron lone pair on the lead atoms and four‐coordinated iodine atoms. The Pb2X(S‐C6H5)3 materials feature an indirect bandgap, strongly emissive long‐lived self‐trap states, and an extremely large Stokes shift. Interestingly, the optical bandgap of the materials can be tuned through variation of the halides; however, the photoluminescence is less sensitive to the composition and is more likely dominated by lead‐sulfur lattice interactions or the lead lone‐pair electrons. Our results support that a halide–organothiolate mixed anion hybrid structure offers a unique platform for discovering new exciting 2D electronic materials.
A new 2D hybrid material, Pb2X(S‐C6H5)3 (X=I, Br, or Cl), was synthesized and characterized with experimental and computational methods. These materials feature strong absorption, an extremely large Stokes Shift, and long carrier lifetimes. Interestingly, the bandgap can be tuned by choice of halide, with little to no effect on the photoluminescent emission.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.201905790</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6411-8591</orcidid><orcidid>https://orcid.org/0000000164118591</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2020-05, Vol.26 (29), p.6599-6607 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_osti_scitechconnect_1630224 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2D materials Chemistry Electronic materials electronic structures Energy gap Halides Hybrid structures Iodine layered compounds Layered materials Lead compounds lead halides Metal halides Optical properties Optoelectronics Photoluminescence Photons S ligands Sulfur |
title | Structural Tunability and Diversity of Two‐Dimensional Lead Halide Benzenethiolate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A20%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Tunability%20and%20Diversity%20of%20Two%E2%80%90Dimensional%20Lead%20Halide%20Benzenethiolate&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Coffey,%20Aidan%20H.&rft.date=2020-05-20&rft.volume=26&rft.issue=29&rft.spage=6599&rft.epage=6607&rft.pages=6599-6607&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201905790&rft_dat=%3Cproquest_osti_%3E2404564575%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2404564575&rft_id=info:pmid/&rfr_iscdi=true |