Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data

With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IUCrJ 2020-01, Vol.7 (1)
Hauptverfasser: Nishiyama, Toshiyuki, Niozu, Akinobu, Bostedt, Christoph, Ferguson, Ken R., Sato, Yuhiro, Hutchison, Christopher, Nagaya, Kiyonobu, Fukuzawa, Hironobu, Motomura, Koji, Wada, Shin-ichi, Sakai, Tsukasa, Matsunami, Kenji, Matsuda, Kazuhiro, Tachibana, Tetsuya, Ito, Yuta, Xu, Weiqing, Mondal, Subhendu, Umemoto, Takayuki, Nicolas, Christophe, Miron, Catalin, Kameshima, Takashi, Joti, Yasumasa, Tono, Kensuke, Hatsui, Takaki, Yabashi, Makina, Ueda, Kiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title IUCrJ
container_volume 7
creator Nishiyama, Toshiyuki
Niozu, Akinobu
Bostedt, Christoph
Ferguson, Ken R.
Sato, Yuhiro
Hutchison, Christopher
Nagaya, Kiyonobu
Fukuzawa, Hironobu
Motomura, Koji
Wada, Shin-ichi
Sakai, Tsukasa
Matsunami, Kenji
Matsuda, Kazuhiro
Tachibana, Tetsuya
Ito, Yuta
Xu, Weiqing
Mondal, Subhendu
Umemoto, Takayuki
Nicolas, Christophe
Miron, Catalin
Kameshima, Takashi
Joti, Yasumasa
Tono, Kensuke
Hatsui, Takaki
Yabashi, Makina
Ueda, Kiyoshi
description With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1617948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1617948</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16179483</originalsourceid><addsrcrecordid>eNqNjMFqwzAQBUVIICbxP4jcDZZi1e05tPQceg9CXsVb5N1YWlP696WlhRx7enOYeStV2dbZxjrr1ne8VXUp723bGmNd35lKzWeISDABiY6cdUG6JmjIE998FgwJdJG8BFky6AEE8oTkBZl0zDzpxB_NvPiE8vkXl5FFBx4hf78OGGP24acYvPi92kSfCtS_u1OHl-e302vDRfBSAgqEMTARBLmYB9M_dY_Hf0lfaAxO4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Nishiyama, Toshiyuki ; Niozu, Akinobu ; Bostedt, Christoph ; Ferguson, Ken R. ; Sato, Yuhiro ; Hutchison, Christopher ; Nagaya, Kiyonobu ; Fukuzawa, Hironobu ; Motomura, Koji ; Wada, Shin-ichi ; Sakai, Tsukasa ; Matsunami, Kenji ; Matsuda, Kazuhiro ; Tachibana, Tetsuya ; Ito, Yuta ; Xu, Weiqing ; Mondal, Subhendu ; Umemoto, Takayuki ; Nicolas, Christophe ; Miron, Catalin ; Kameshima, Takashi ; Joti, Yasumasa ; Tono, Kensuke ; Hatsui, Takaki ; Yabashi, Makina ; Ueda, Kiyoshi</creator><creatorcontrib>Nishiyama, Toshiyuki ; Niozu, Akinobu ; Bostedt, Christoph ; Ferguson, Ken R. ; Sato, Yuhiro ; Hutchison, Christopher ; Nagaya, Kiyonobu ; Fukuzawa, Hironobu ; Motomura, Koji ; Wada, Shin-ichi ; Sakai, Tsukasa ; Matsunami, Kenji ; Matsuda, Kazuhiro ; Tachibana, Tetsuya ; Ito, Yuta ; Xu, Weiqing ; Mondal, Subhendu ; Umemoto, Takayuki ; Nicolas, Christophe ; Miron, Catalin ; Kameshima, Takashi ; Joti, Yasumasa ; Tono, Kensuke ; Hatsui, Takaki ; Yabashi, Makina ; Ueda, Kiyoshi ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power.</description><identifier>ISSN: 2052-2525</identifier><identifier>EISSN: 2052-2525</identifier><language>eng</language><publisher>United Kingdom: International Union of Crystallography</publisher><subject>clusters ; coherent diffractive imaging ; computation ; electron density ; phase problem ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; single particles ; structure reconstruction ; XFELs</subject><ispartof>IUCrJ, 2020-01, Vol.7 (1)</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000198670800 ; 0000000167126335 ; 0000000180518966 ; 0000000264173248 ; 0000000283027158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1617948$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishiyama, Toshiyuki</creatorcontrib><creatorcontrib>Niozu, Akinobu</creatorcontrib><creatorcontrib>Bostedt, Christoph</creatorcontrib><creatorcontrib>Ferguson, Ken R.</creatorcontrib><creatorcontrib>Sato, Yuhiro</creatorcontrib><creatorcontrib>Hutchison, Christopher</creatorcontrib><creatorcontrib>Nagaya, Kiyonobu</creatorcontrib><creatorcontrib>Fukuzawa, Hironobu</creatorcontrib><creatorcontrib>Motomura, Koji</creatorcontrib><creatorcontrib>Wada, Shin-ichi</creatorcontrib><creatorcontrib>Sakai, Tsukasa</creatorcontrib><creatorcontrib>Matsunami, Kenji</creatorcontrib><creatorcontrib>Matsuda, Kazuhiro</creatorcontrib><creatorcontrib>Tachibana, Tetsuya</creatorcontrib><creatorcontrib>Ito, Yuta</creatorcontrib><creatorcontrib>Xu, Weiqing</creatorcontrib><creatorcontrib>Mondal, Subhendu</creatorcontrib><creatorcontrib>Umemoto, Takayuki</creatorcontrib><creatorcontrib>Nicolas, Christophe</creatorcontrib><creatorcontrib>Miron, Catalin</creatorcontrib><creatorcontrib>Kameshima, Takashi</creatorcontrib><creatorcontrib>Joti, Yasumasa</creatorcontrib><creatorcontrib>Tono, Kensuke</creatorcontrib><creatorcontrib>Hatsui, Takaki</creatorcontrib><creatorcontrib>Yabashi, Makina</creatorcontrib><creatorcontrib>Ueda, Kiyoshi</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data</title><title>IUCrJ</title><description>With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power.</description><subject>clusters</subject><subject>coherent diffractive imaging</subject><subject>computation</subject><subject>electron density</subject><subject>phase problem</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>single particles</subject><subject>structure reconstruction</subject><subject>XFELs</subject><issn>2052-2525</issn><issn>2052-2525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNjMFqwzAQBUVIICbxP4jcDZZi1e05tPQceg9CXsVb5N1YWlP696WlhRx7enOYeStV2dbZxjrr1ne8VXUp723bGmNd35lKzWeISDABiY6cdUG6JmjIE998FgwJdJG8BFky6AEE8oTkBZl0zDzpxB_NvPiE8vkXl5FFBx4hf78OGGP24acYvPi92kSfCtS_u1OHl-e302vDRfBSAgqEMTARBLmYB9M_dY_Hf0lfaAxO4w</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Nishiyama, Toshiyuki</creator><creator>Niozu, Akinobu</creator><creator>Bostedt, Christoph</creator><creator>Ferguson, Ken R.</creator><creator>Sato, Yuhiro</creator><creator>Hutchison, Christopher</creator><creator>Nagaya, Kiyonobu</creator><creator>Fukuzawa, Hironobu</creator><creator>Motomura, Koji</creator><creator>Wada, Shin-ichi</creator><creator>Sakai, Tsukasa</creator><creator>Matsunami, Kenji</creator><creator>Matsuda, Kazuhiro</creator><creator>Tachibana, Tetsuya</creator><creator>Ito, Yuta</creator><creator>Xu, Weiqing</creator><creator>Mondal, Subhendu</creator><creator>Umemoto, Takayuki</creator><creator>Nicolas, Christophe</creator><creator>Miron, Catalin</creator><creator>Kameshima, Takashi</creator><creator>Joti, Yasumasa</creator><creator>Tono, Kensuke</creator><creator>Hatsui, Takaki</creator><creator>Yabashi, Makina</creator><creator>Ueda, Kiyoshi</creator><general>International Union of Crystallography</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000198670800</orcidid><orcidid>https://orcid.org/0000000167126335</orcidid><orcidid>https://orcid.org/0000000180518966</orcidid><orcidid>https://orcid.org/0000000264173248</orcidid><orcidid>https://orcid.org/0000000283027158</orcidid></search><sort><creationdate>20200101</creationdate><title>Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data</title><author>Nishiyama, Toshiyuki ; Niozu, Akinobu ; Bostedt, Christoph ; Ferguson, Ken R. ; Sato, Yuhiro ; Hutchison, Christopher ; Nagaya, Kiyonobu ; Fukuzawa, Hironobu ; Motomura, Koji ; Wada, Shin-ichi ; Sakai, Tsukasa ; Matsunami, Kenji ; Matsuda, Kazuhiro ; Tachibana, Tetsuya ; Ito, Yuta ; Xu, Weiqing ; Mondal, Subhendu ; Umemoto, Takayuki ; Nicolas, Christophe ; Miron, Catalin ; Kameshima, Takashi ; Joti, Yasumasa ; Tono, Kensuke ; Hatsui, Takaki ; Yabashi, Makina ; Ueda, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16179483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>clusters</topic><topic>coherent diffractive imaging</topic><topic>computation</topic><topic>electron density</topic><topic>phase problem</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>single particles</topic><topic>structure reconstruction</topic><topic>XFELs</topic><toplevel>online_resources</toplevel><creatorcontrib>Nishiyama, Toshiyuki</creatorcontrib><creatorcontrib>Niozu, Akinobu</creatorcontrib><creatorcontrib>Bostedt, Christoph</creatorcontrib><creatorcontrib>Ferguson, Ken R.</creatorcontrib><creatorcontrib>Sato, Yuhiro</creatorcontrib><creatorcontrib>Hutchison, Christopher</creatorcontrib><creatorcontrib>Nagaya, Kiyonobu</creatorcontrib><creatorcontrib>Fukuzawa, Hironobu</creatorcontrib><creatorcontrib>Motomura, Koji</creatorcontrib><creatorcontrib>Wada, Shin-ichi</creatorcontrib><creatorcontrib>Sakai, Tsukasa</creatorcontrib><creatorcontrib>Matsunami, Kenji</creatorcontrib><creatorcontrib>Matsuda, Kazuhiro</creatorcontrib><creatorcontrib>Tachibana, Tetsuya</creatorcontrib><creatorcontrib>Ito, Yuta</creatorcontrib><creatorcontrib>Xu, Weiqing</creatorcontrib><creatorcontrib>Mondal, Subhendu</creatorcontrib><creatorcontrib>Umemoto, Takayuki</creatorcontrib><creatorcontrib>Nicolas, Christophe</creatorcontrib><creatorcontrib>Miron, Catalin</creatorcontrib><creatorcontrib>Kameshima, Takashi</creatorcontrib><creatorcontrib>Joti, Yasumasa</creatorcontrib><creatorcontrib>Tono, Kensuke</creatorcontrib><creatorcontrib>Hatsui, Takaki</creatorcontrib><creatorcontrib>Yabashi, Makina</creatorcontrib><creatorcontrib>Ueda, Kiyoshi</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>IUCrJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishiyama, Toshiyuki</au><au>Niozu, Akinobu</au><au>Bostedt, Christoph</au><au>Ferguson, Ken R.</au><au>Sato, Yuhiro</au><au>Hutchison, Christopher</au><au>Nagaya, Kiyonobu</au><au>Fukuzawa, Hironobu</au><au>Motomura, Koji</au><au>Wada, Shin-ichi</au><au>Sakai, Tsukasa</au><au>Matsunami, Kenji</au><au>Matsuda, Kazuhiro</au><au>Tachibana, Tetsuya</au><au>Ito, Yuta</au><au>Xu, Weiqing</au><au>Mondal, Subhendu</au><au>Umemoto, Takayuki</au><au>Nicolas, Christophe</au><au>Miron, Catalin</au><au>Kameshima, Takashi</au><au>Joti, Yasumasa</au><au>Tono, Kensuke</au><au>Hatsui, Takaki</au><au>Yabashi, Makina</au><au>Ueda, Kiyoshi</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data</atitle><jtitle>IUCrJ</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><issn>2052-2525</issn><eissn>2052-2525</eissn><abstract>With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power.</abstract><cop>United Kingdom</cop><pub>International Union of Crystallography</pub><orcidid>https://orcid.org/0000000198670800</orcidid><orcidid>https://orcid.org/0000000167126335</orcidid><orcidid>https://orcid.org/0000000180518966</orcidid><orcidid>https://orcid.org/0000000264173248</orcidid><orcidid>https://orcid.org/0000000283027158</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2052-2525
ispartof IUCrJ, 2020-01, Vol.7 (1)
issn 2052-2525
2052-2525
language eng
recordid cdi_osti_scitechconnect_1617948
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects clusters
coherent diffractive imaging
computation
electron density
phase problem
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
single particles
structure reconstruction
XFELs
title Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refinement%20for%20single-nanoparticle%20structure%20determination%20from%20low-quality%20single-shot%20coherent%20diffraction%20data&rft.jtitle=IUCrJ&rft.au=Nishiyama,%20Toshiyuki&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-01-01&rft.volume=7&rft.issue=1&rft.issn=2052-2525&rft.eissn=2052-2525&rft_id=info:doi/&rft_dat=%3Costi%3E1617948%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true