Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields
In recent years, it has been realized that low and ultra-low field (mT–nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrati...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2020-05, Vol.91 (5), p.054103-054103 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 054103 |
---|---|
container_issue | 5 |
container_start_page | 054103 |
container_title | Review of scientific instruments |
container_volume | 91 |
creator | Kaseman, Derrick C. Magnelind, Per E. Widgeon Paisner, Scarlett Yoder, Jacob L. Alvarez, Marc Urbaitis, Algis V. Janicke, Michael T. Nath, Pulak Espy, Michelle A. Williams, Robert F. |
description | In recent years, it has been realized that low and ultra-low field (mT–nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrations. Here, we report a low field (50 μT) instrument that employs a linear actuator to shuttle samples between a 1 T prepolarization field and a solenoid detector in a laboratory setting. The current experimental setup is benchmarked using water and 13C-methanol with a single scan detection limit of 2 × 1020 spins (3 µl, 55M H2O) and detection limit of 2.9 × 1019 (200 µl, 617 mM 13C-methanol) spins with signal averaging. The system has a dynamic range of >3 orders of magnitude. Investigations of room-temperature relaxation dynamics of 13C-methanol show that sample dilution can be used in lieu of sample heating to acquire spectra with linewidths comparable to high-temperature spectra. These results indicate that the T1 and T2 mechanisms are governed by both the proton exchange rate and the dissolved oxygen in the sample. Finally, a 2D correlation spectroscopy experiment is reported, performed in the strong coupling regime that resolves the multiple resonances associated with the heteronuclear J-coupling. The spectrum was collected using 10 times less sample and in less than half the time from previous reports in the strong coupling limit. |
doi_str_mv | 10.1063/1.5130391 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1617094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409190675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-d8659702e7f9d48c4b74850e9b23bd1cd0c8bb70f28c9bfd7280c22b80cfc7db3</originalsourceid><addsrcrecordid>eNp90U1vFiEQAGDSaOJr9eA_IPaiTbblY3dZjqZq1TTxUs-EhaGlYZctsH7c_eHSdxub1EQOQMgzk2EGoVeUnFDS81N60lFOuKQHaEfJIBvRM_4E7QjhbdOLdniGnud8Q-rqKN2h3-8h-6sZ69liPy0BJpiLLj7OODqs8ZfGxLU-W5wXMCXFCQok7GLC0xqKt74G5Mp1wLmk1ZQ1wT5bgqB_bplsjTH7my44xB940lczFG-w8xBsfoGeOh0yvLw_D9G3jx8uzz41F1_PP5-9u2hMy1hp7NB3UhAGwknbDqYd6386AnJkfLTUWGKGcRTEscHI0VnBBmIYG-vujLAjP0Svt7wxF6-y8bWsaxPnuVanaE8FkW1Fbza0pHi7Qi5q8tlACHqGuGbFWiKpJL3oKj16RG_immorquJSSMq7dqjq7aZMijkncGpJftLpl6JE3Q1NUXU_tGqPN3tX3L55f_H3mB6gWqz7H_438x8gMKc9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397913548</pqid></control><display><type>article</type><title>Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kaseman, Derrick C. ; Magnelind, Per E. ; Widgeon Paisner, Scarlett ; Yoder, Jacob L. ; Alvarez, Marc ; Urbaitis, Algis V. ; Janicke, Michael T. ; Nath, Pulak ; Espy, Michelle A. ; Williams, Robert F.</creator><creatorcontrib>Kaseman, Derrick C. ; Magnelind, Per E. ; Widgeon Paisner, Scarlett ; Yoder, Jacob L. ; Alvarez, Marc ; Urbaitis, Algis V. ; Janicke, Michael T. ; Nath, Pulak ; Espy, Michelle A. ; Williams, Robert F.</creatorcontrib><description>In recent years, it has been realized that low and ultra-low field (mT–nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrations. Here, we report a low field (50 μT) instrument that employs a linear actuator to shuttle samples between a 1 T prepolarization field and a solenoid detector in a laboratory setting. The current experimental setup is benchmarked using water and 13C-methanol with a single scan detection limit of 2 × 1020 spins (3 µl, 55M H2O) and detection limit of 2.9 × 1019 (200 µl, 617 mM 13C-methanol) spins with signal averaging. The system has a dynamic range of >3 orders of magnitude. Investigations of room-temperature relaxation dynamics of 13C-methanol show that sample dilution can be used in lieu of sample heating to acquire spectra with linewidths comparable to high-temperature spectra. These results indicate that the T1 and T2 mechanisms are governed by both the proton exchange rate and the dissolved oxygen in the sample. Finally, a 2D correlation spectroscopy experiment is reported, performed in the strong coupling regime that resolves the multiple resonances associated with the heteronuclear J-coupling. The spectrum was collected using 10 times less sample and in less than half the time from previous reports in the strong coupling limit.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5130391</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuators ; Coupling (molecular) ; Dilution ; Heat exchange ; High temperature ; Magnetic fields ; Magnetic induction ; Methanol ; NMR ; Nuclear magnetic resonance ; Room temperature ; Scientific apparatus & instruments ; Signal averaging ; Solenoids ; Spectra ; Spectrum analysis ; Structural analysis</subject><ispartof>Review of scientific instruments, 2020-05, Vol.91 (5), p.054103-054103</ispartof><rights>U.S. Government</rights><rights>2020U.S. Government</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-d8659702e7f9d48c4b74850e9b23bd1cd0c8bb70f28c9bfd7280c22b80cfc7db3</citedby><cites>FETCH-LOGICAL-c422t-d8659702e7f9d48c4b74850e9b23bd1cd0c8bb70f28c9bfd7280c22b80cfc7db3</cites><orcidid>0000-0001-7667-9521 ; 0000-0003-2076-1264 ; 0000-0002-3139-2882 ; 0000-0001-8427-3513 ; 0000-0002-8626-5987 ; 0000-0002-7275-3314 ; 0000-0003-1135-4130 ; 0000-0003-2956-7505 ; 0000000176679521 ; 0000000329567505 ; 0000000311354130 ; 0000000231392882 ; 0000000184273513 ; 0000000320761264 ; 0000000272753314 ; 0000000286265987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5130391$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4509,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1617094$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaseman, Derrick C.</creatorcontrib><creatorcontrib>Magnelind, Per E.</creatorcontrib><creatorcontrib>Widgeon Paisner, Scarlett</creatorcontrib><creatorcontrib>Yoder, Jacob L.</creatorcontrib><creatorcontrib>Alvarez, Marc</creatorcontrib><creatorcontrib>Urbaitis, Algis V.</creatorcontrib><creatorcontrib>Janicke, Michael T.</creatorcontrib><creatorcontrib>Nath, Pulak</creatorcontrib><creatorcontrib>Espy, Michelle A.</creatorcontrib><creatorcontrib>Williams, Robert F.</creatorcontrib><title>Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields</title><title>Review of scientific instruments</title><description>In recent years, it has been realized that low and ultra-low field (mT–nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrations. Here, we report a low field (50 μT) instrument that employs a linear actuator to shuttle samples between a 1 T prepolarization field and a solenoid detector in a laboratory setting. The current experimental setup is benchmarked using water and 13C-methanol with a single scan detection limit of 2 × 1020 spins (3 µl, 55M H2O) and detection limit of 2.9 × 1019 (200 µl, 617 mM 13C-methanol) spins with signal averaging. The system has a dynamic range of >3 orders of magnitude. Investigations of room-temperature relaxation dynamics of 13C-methanol show that sample dilution can be used in lieu of sample heating to acquire spectra with linewidths comparable to high-temperature spectra. These results indicate that the T1 and T2 mechanisms are governed by both the proton exchange rate and the dissolved oxygen in the sample. Finally, a 2D correlation spectroscopy experiment is reported, performed in the strong coupling regime that resolves the multiple resonances associated with the heteronuclear J-coupling. The spectrum was collected using 10 times less sample and in less than half the time from previous reports in the strong coupling limit.</description><subject>Actuators</subject><subject>Coupling (molecular)</subject><subject>Dilution</subject><subject>Heat exchange</subject><subject>High temperature</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Methanol</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Room temperature</subject><subject>Scientific apparatus & instruments</subject><subject>Signal averaging</subject><subject>Solenoids</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><subject>Structural analysis</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90U1vFiEQAGDSaOJr9eA_IPaiTbblY3dZjqZq1TTxUs-EhaGlYZctsH7c_eHSdxub1EQOQMgzk2EGoVeUnFDS81N60lFOuKQHaEfJIBvRM_4E7QjhbdOLdniGnud8Q-rqKN2h3-8h-6sZ69liPy0BJpiLLj7OODqs8ZfGxLU-W5wXMCXFCQok7GLC0xqKt74G5Mp1wLmk1ZQ1wT5bgqB_bplsjTH7my44xB940lczFG-w8xBsfoGeOh0yvLw_D9G3jx8uzz41F1_PP5-9u2hMy1hp7NB3UhAGwknbDqYd6386AnJkfLTUWGKGcRTEscHI0VnBBmIYG-vujLAjP0Svt7wxF6-y8bWsaxPnuVanaE8FkW1Fbza0pHi7Qi5q8tlACHqGuGbFWiKpJL3oKj16RG_immorquJSSMq7dqjq7aZMijkncGpJftLpl6JE3Q1NUXU_tGqPN3tX3L55f_H3mB6gWqz7H_438x8gMKc9</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Kaseman, Derrick C.</creator><creator>Magnelind, Per E.</creator><creator>Widgeon Paisner, Scarlett</creator><creator>Yoder, Jacob L.</creator><creator>Alvarez, Marc</creator><creator>Urbaitis, Algis V.</creator><creator>Janicke, Michael T.</creator><creator>Nath, Pulak</creator><creator>Espy, Michelle A.</creator><creator>Williams, Robert F.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7667-9521</orcidid><orcidid>https://orcid.org/0000-0003-2076-1264</orcidid><orcidid>https://orcid.org/0000-0002-3139-2882</orcidid><orcidid>https://orcid.org/0000-0001-8427-3513</orcidid><orcidid>https://orcid.org/0000-0002-8626-5987</orcidid><orcidid>https://orcid.org/0000-0002-7275-3314</orcidid><orcidid>https://orcid.org/0000-0003-1135-4130</orcidid><orcidid>https://orcid.org/0000-0003-2956-7505</orcidid><orcidid>https://orcid.org/0000000176679521</orcidid><orcidid>https://orcid.org/0000000329567505</orcidid><orcidid>https://orcid.org/0000000311354130</orcidid><orcidid>https://orcid.org/0000000231392882</orcidid><orcidid>https://orcid.org/0000000184273513</orcidid><orcidid>https://orcid.org/0000000320761264</orcidid><orcidid>https://orcid.org/0000000272753314</orcidid><orcidid>https://orcid.org/0000000286265987</orcidid></search><sort><creationdate>20200501</creationdate><title>Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields</title><author>Kaseman, Derrick C. ; Magnelind, Per E. ; Widgeon Paisner, Scarlett ; Yoder, Jacob L. ; Alvarez, Marc ; Urbaitis, Algis V. ; Janicke, Michael T. ; Nath, Pulak ; Espy, Michelle A. ; Williams, Robert F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-d8659702e7f9d48c4b74850e9b23bd1cd0c8bb70f28c9bfd7280c22b80cfc7db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Coupling (molecular)</topic><topic>Dilution</topic><topic>Heat exchange</topic><topic>High temperature</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Methanol</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Room temperature</topic><topic>Scientific apparatus & instruments</topic><topic>Signal averaging</topic><topic>Solenoids</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaseman, Derrick C.</creatorcontrib><creatorcontrib>Magnelind, Per E.</creatorcontrib><creatorcontrib>Widgeon Paisner, Scarlett</creatorcontrib><creatorcontrib>Yoder, Jacob L.</creatorcontrib><creatorcontrib>Alvarez, Marc</creatorcontrib><creatorcontrib>Urbaitis, Algis V.</creatorcontrib><creatorcontrib>Janicke, Michael T.</creatorcontrib><creatorcontrib>Nath, Pulak</creatorcontrib><creatorcontrib>Espy, Michelle A.</creatorcontrib><creatorcontrib>Williams, Robert F.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaseman, Derrick C.</au><au>Magnelind, Per E.</au><au>Widgeon Paisner, Scarlett</au><au>Yoder, Jacob L.</au><au>Alvarez, Marc</au><au>Urbaitis, Algis V.</au><au>Janicke, Michael T.</au><au>Nath, Pulak</au><au>Espy, Michelle A.</au><au>Williams, Robert F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields</atitle><jtitle>Review of scientific instruments</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>91</volume><issue>5</issue><spage>054103</spage><epage>054103</epage><pages>054103-054103</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>In recent years, it has been realized that low and ultra-low field (mT–nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrations. Here, we report a low field (50 μT) instrument that employs a linear actuator to shuttle samples between a 1 T prepolarization field and a solenoid detector in a laboratory setting. The current experimental setup is benchmarked using water and 13C-methanol with a single scan detection limit of 2 × 1020 spins (3 µl, 55M H2O) and detection limit of 2.9 × 1019 (200 µl, 617 mM 13C-methanol) spins with signal averaging. The system has a dynamic range of >3 orders of magnitude. Investigations of room-temperature relaxation dynamics of 13C-methanol show that sample dilution can be used in lieu of sample heating to acquire spectra with linewidths comparable to high-temperature spectra. These results indicate that the T1 and T2 mechanisms are governed by both the proton exchange rate and the dissolved oxygen in the sample. Finally, a 2D correlation spectroscopy experiment is reported, performed in the strong coupling regime that resolves the multiple resonances associated with the heteronuclear J-coupling. The spectrum was collected using 10 times less sample and in less than half the time from previous reports in the strong coupling limit.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5130391</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7667-9521</orcidid><orcidid>https://orcid.org/0000-0003-2076-1264</orcidid><orcidid>https://orcid.org/0000-0002-3139-2882</orcidid><orcidid>https://orcid.org/0000-0001-8427-3513</orcidid><orcidid>https://orcid.org/0000-0002-8626-5987</orcidid><orcidid>https://orcid.org/0000-0002-7275-3314</orcidid><orcidid>https://orcid.org/0000-0003-1135-4130</orcidid><orcidid>https://orcid.org/0000-0003-2956-7505</orcidid><orcidid>https://orcid.org/0000000176679521</orcidid><orcidid>https://orcid.org/0000000329567505</orcidid><orcidid>https://orcid.org/0000000311354130</orcidid><orcidid>https://orcid.org/0000000231392882</orcidid><orcidid>https://orcid.org/0000000184273513</orcidid><orcidid>https://orcid.org/0000000320761264</orcidid><orcidid>https://orcid.org/0000000272753314</orcidid><orcidid>https://orcid.org/0000000286265987</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2020-05, Vol.91 (5), p.054103-054103 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_osti_scitechconnect_1617094 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Actuators Coupling (molecular) Dilution Heat exchange High temperature Magnetic fields Magnetic induction Methanol NMR Nuclear magnetic resonance Room temperature Scientific apparatus & instruments Signal averaging Solenoids Spectra Spectrum analysis Structural analysis |
title | Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20implementation%20of%20a%20J-coupled%20spectrometer%20for%20multidimensional%20structure%20and%20relaxation%20detection%20at%20low%20magnetic%20fields&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Kaseman,%20Derrick%20C.&rft.date=2020-05-01&rft.volume=91&rft.issue=5&rft.spage=054103&rft.epage=054103&rft.pages=054103-054103&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5130391&rft_dat=%3Cproquest_osti_%3E2409190675%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397913548&rft_id=info:pmid/&rfr_iscdi=true |