Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields

In recent years, it has been realized that low and ultra-low field (mT–nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2020-05, Vol.91 (5), p.054103-054103
Hauptverfasser: Kaseman, Derrick C., Magnelind, Per E., Widgeon Paisner, Scarlett, Yoder, Jacob L., Alvarez, Marc, Urbaitis, Algis V., Janicke, Michael T., Nath, Pulak, Espy, Michelle A., Williams, Robert F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 054103
container_issue 5
container_start_page 054103
container_title Review of scientific instruments
container_volume 91
creator Kaseman, Derrick C.
Magnelind, Per E.
Widgeon Paisner, Scarlett
Yoder, Jacob L.
Alvarez, Marc
Urbaitis, Algis V.
Janicke, Michael T.
Nath, Pulak
Espy, Michelle A.
Williams, Robert F.
description In recent years, it has been realized that low and ultra-low field (mT–nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrations. Here, we report a low field (50 μT) instrument that employs a linear actuator to shuttle samples between a 1 T prepolarization field and a solenoid detector in a laboratory setting. The current experimental setup is benchmarked using water and 13C-methanol with a single scan detection limit of 2 × 1020 spins (3 µl, 55M H2O) and detection limit of 2.9 × 1019 (200 µl, 617 mM 13C-methanol) spins with signal averaging. The system has a dynamic range of >3 orders of magnitude. Investigations of room-temperature relaxation dynamics of 13C-methanol show that sample dilution can be used in lieu of sample heating to acquire spectra with linewidths comparable to high-temperature spectra. These results indicate that the T1 and T2 mechanisms are governed by both the proton exchange rate and the dissolved oxygen in the sample. Finally, a 2D correlation spectroscopy experiment is reported, performed in the strong coupling regime that resolves the multiple resonances associated with the heteronuclear J-coupling. The spectrum was collected using 10 times less sample and in less than half the time from previous reports in the strong coupling limit.
doi_str_mv 10.1063/1.5130391
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1617094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409190675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-d8659702e7f9d48c4b74850e9b23bd1cd0c8bb70f28c9bfd7280c22b80cfc7db3</originalsourceid><addsrcrecordid>eNp90U1vFiEQAGDSaOJr9eA_IPaiTbblY3dZjqZq1TTxUs-EhaGlYZctsH7c_eHSdxub1EQOQMgzk2EGoVeUnFDS81N60lFOuKQHaEfJIBvRM_4E7QjhbdOLdniGnud8Q-rqKN2h3-8h-6sZ69liPy0BJpiLLj7OODqs8ZfGxLU-W5wXMCXFCQok7GLC0xqKt74G5Mp1wLmk1ZQ1wT5bgqB_bplsjTH7my44xB940lczFG-w8xBsfoGeOh0yvLw_D9G3jx8uzz41F1_PP5-9u2hMy1hp7NB3UhAGwknbDqYd6386AnJkfLTUWGKGcRTEscHI0VnBBmIYG-vujLAjP0Svt7wxF6-y8bWsaxPnuVanaE8FkW1Fbza0pHi7Qi5q8tlACHqGuGbFWiKpJL3oKj16RG_immorquJSSMq7dqjq7aZMijkncGpJftLpl6JE3Q1NUXU_tGqPN3tX3L55f_H3mB6gWqz7H_438x8gMKc9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397913548</pqid></control><display><type>article</type><title>Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kaseman, Derrick C. ; Magnelind, Per E. ; Widgeon Paisner, Scarlett ; Yoder, Jacob L. ; Alvarez, Marc ; Urbaitis, Algis V. ; Janicke, Michael T. ; Nath, Pulak ; Espy, Michelle A. ; Williams, Robert F.</creator><creatorcontrib>Kaseman, Derrick C. ; Magnelind, Per E. ; Widgeon Paisner, Scarlett ; Yoder, Jacob L. ; Alvarez, Marc ; Urbaitis, Algis V. ; Janicke, Michael T. ; Nath, Pulak ; Espy, Michelle A. ; Williams, Robert F.</creatorcontrib><description>In recent years, it has been realized that low and ultra-low field (mT–nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrations. Here, we report a low field (50 μT) instrument that employs a linear actuator to shuttle samples between a 1 T prepolarization field and a solenoid detector in a laboratory setting. The current experimental setup is benchmarked using water and 13C-methanol with a single scan detection limit of 2 × 1020 spins (3 µl, 55M H2O) and detection limit of 2.9 × 1019 (200 µl, 617 mM 13C-methanol) spins with signal averaging. The system has a dynamic range of &gt;3 orders of magnitude. Investigations of room-temperature relaxation dynamics of 13C-methanol show that sample dilution can be used in lieu of sample heating to acquire spectra with linewidths comparable to high-temperature spectra. These results indicate that the T1 and T2 mechanisms are governed by both the proton exchange rate and the dissolved oxygen in the sample. Finally, a 2D correlation spectroscopy experiment is reported, performed in the strong coupling regime that resolves the multiple resonances associated with the heteronuclear J-coupling. The spectrum was collected using 10 times less sample and in less than half the time from previous reports in the strong coupling limit.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5130391</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuators ; Coupling (molecular) ; Dilution ; Heat exchange ; High temperature ; Magnetic fields ; Magnetic induction ; Methanol ; NMR ; Nuclear magnetic resonance ; Room temperature ; Scientific apparatus &amp; instruments ; Signal averaging ; Solenoids ; Spectra ; Spectrum analysis ; Structural analysis</subject><ispartof>Review of scientific instruments, 2020-05, Vol.91 (5), p.054103-054103</ispartof><rights>U.S. Government</rights><rights>2020U.S. Government</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-d8659702e7f9d48c4b74850e9b23bd1cd0c8bb70f28c9bfd7280c22b80cfc7db3</citedby><cites>FETCH-LOGICAL-c422t-d8659702e7f9d48c4b74850e9b23bd1cd0c8bb70f28c9bfd7280c22b80cfc7db3</cites><orcidid>0000-0001-7667-9521 ; 0000-0003-2076-1264 ; 0000-0002-3139-2882 ; 0000-0001-8427-3513 ; 0000-0002-8626-5987 ; 0000-0002-7275-3314 ; 0000-0003-1135-4130 ; 0000-0003-2956-7505 ; 0000000176679521 ; 0000000329567505 ; 0000000311354130 ; 0000000231392882 ; 0000000184273513 ; 0000000320761264 ; 0000000272753314 ; 0000000286265987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5130391$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4509,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1617094$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaseman, Derrick C.</creatorcontrib><creatorcontrib>Magnelind, Per E.</creatorcontrib><creatorcontrib>Widgeon Paisner, Scarlett</creatorcontrib><creatorcontrib>Yoder, Jacob L.</creatorcontrib><creatorcontrib>Alvarez, Marc</creatorcontrib><creatorcontrib>Urbaitis, Algis V.</creatorcontrib><creatorcontrib>Janicke, Michael T.</creatorcontrib><creatorcontrib>Nath, Pulak</creatorcontrib><creatorcontrib>Espy, Michelle A.</creatorcontrib><creatorcontrib>Williams, Robert F.</creatorcontrib><title>Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields</title><title>Review of scientific instruments</title><description>In recent years, it has been realized that low and ultra-low field (mT–nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrations. Here, we report a low field (50 μT) instrument that employs a linear actuator to shuttle samples between a 1 T prepolarization field and a solenoid detector in a laboratory setting. The current experimental setup is benchmarked using water and 13C-methanol with a single scan detection limit of 2 × 1020 spins (3 µl, 55M H2O) and detection limit of 2.9 × 1019 (200 µl, 617 mM 13C-methanol) spins with signal averaging. The system has a dynamic range of &gt;3 orders of magnitude. Investigations of room-temperature relaxation dynamics of 13C-methanol show that sample dilution can be used in lieu of sample heating to acquire spectra with linewidths comparable to high-temperature spectra. These results indicate that the T1 and T2 mechanisms are governed by both the proton exchange rate and the dissolved oxygen in the sample. Finally, a 2D correlation spectroscopy experiment is reported, performed in the strong coupling regime that resolves the multiple resonances associated with the heteronuclear J-coupling. The spectrum was collected using 10 times less sample and in less than half the time from previous reports in the strong coupling limit.</description><subject>Actuators</subject><subject>Coupling (molecular)</subject><subject>Dilution</subject><subject>Heat exchange</subject><subject>High temperature</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Methanol</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Room temperature</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Signal averaging</subject><subject>Solenoids</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><subject>Structural analysis</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90U1vFiEQAGDSaOJr9eA_IPaiTbblY3dZjqZq1TTxUs-EhaGlYZctsH7c_eHSdxub1EQOQMgzk2EGoVeUnFDS81N60lFOuKQHaEfJIBvRM_4E7QjhbdOLdniGnud8Q-rqKN2h3-8h-6sZ69liPy0BJpiLLj7OODqs8ZfGxLU-W5wXMCXFCQok7GLC0xqKt74G5Mp1wLmk1ZQ1wT5bgqB_bplsjTH7my44xB940lczFG-w8xBsfoGeOh0yvLw_D9G3jx8uzz41F1_PP5-9u2hMy1hp7NB3UhAGwknbDqYd6386AnJkfLTUWGKGcRTEscHI0VnBBmIYG-vujLAjP0Svt7wxF6-y8bWsaxPnuVanaE8FkW1Fbza0pHi7Qi5q8tlACHqGuGbFWiKpJL3oKj16RG_immorquJSSMq7dqjq7aZMijkncGpJftLpl6JE3Q1NUXU_tGqPN3tX3L55f_H3mB6gWqz7H_438x8gMKc9</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Kaseman, Derrick C.</creator><creator>Magnelind, Per E.</creator><creator>Widgeon Paisner, Scarlett</creator><creator>Yoder, Jacob L.</creator><creator>Alvarez, Marc</creator><creator>Urbaitis, Algis V.</creator><creator>Janicke, Michael T.</creator><creator>Nath, Pulak</creator><creator>Espy, Michelle A.</creator><creator>Williams, Robert F.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7667-9521</orcidid><orcidid>https://orcid.org/0000-0003-2076-1264</orcidid><orcidid>https://orcid.org/0000-0002-3139-2882</orcidid><orcidid>https://orcid.org/0000-0001-8427-3513</orcidid><orcidid>https://orcid.org/0000-0002-8626-5987</orcidid><orcidid>https://orcid.org/0000-0002-7275-3314</orcidid><orcidid>https://orcid.org/0000-0003-1135-4130</orcidid><orcidid>https://orcid.org/0000-0003-2956-7505</orcidid><orcidid>https://orcid.org/0000000176679521</orcidid><orcidid>https://orcid.org/0000000329567505</orcidid><orcidid>https://orcid.org/0000000311354130</orcidid><orcidid>https://orcid.org/0000000231392882</orcidid><orcidid>https://orcid.org/0000000184273513</orcidid><orcidid>https://orcid.org/0000000320761264</orcidid><orcidid>https://orcid.org/0000000272753314</orcidid><orcidid>https://orcid.org/0000000286265987</orcidid></search><sort><creationdate>20200501</creationdate><title>Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields</title><author>Kaseman, Derrick C. ; Magnelind, Per E. ; Widgeon Paisner, Scarlett ; Yoder, Jacob L. ; Alvarez, Marc ; Urbaitis, Algis V. ; Janicke, Michael T. ; Nath, Pulak ; Espy, Michelle A. ; Williams, Robert F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-d8659702e7f9d48c4b74850e9b23bd1cd0c8bb70f28c9bfd7280c22b80cfc7db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuators</topic><topic>Coupling (molecular)</topic><topic>Dilution</topic><topic>Heat exchange</topic><topic>High temperature</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Methanol</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Room temperature</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Signal averaging</topic><topic>Solenoids</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaseman, Derrick C.</creatorcontrib><creatorcontrib>Magnelind, Per E.</creatorcontrib><creatorcontrib>Widgeon Paisner, Scarlett</creatorcontrib><creatorcontrib>Yoder, Jacob L.</creatorcontrib><creatorcontrib>Alvarez, Marc</creatorcontrib><creatorcontrib>Urbaitis, Algis V.</creatorcontrib><creatorcontrib>Janicke, Michael T.</creatorcontrib><creatorcontrib>Nath, Pulak</creatorcontrib><creatorcontrib>Espy, Michelle A.</creatorcontrib><creatorcontrib>Williams, Robert F.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaseman, Derrick C.</au><au>Magnelind, Per E.</au><au>Widgeon Paisner, Scarlett</au><au>Yoder, Jacob L.</au><au>Alvarez, Marc</au><au>Urbaitis, Algis V.</au><au>Janicke, Michael T.</au><au>Nath, Pulak</au><au>Espy, Michelle A.</au><au>Williams, Robert F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields</atitle><jtitle>Review of scientific instruments</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>91</volume><issue>5</issue><spage>054103</spage><epage>054103</epage><pages>054103-054103</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>In recent years, it has been realized that low and ultra-low field (mT–nT magnetic field range) nuclear magnetic resonance spectroscopy can be used for molecular structural analysis. However, spectra are often hindered by lengthy acquisition times or require large sample volumes and high concentrations. Here, we report a low field (50 μT) instrument that employs a linear actuator to shuttle samples between a 1 T prepolarization field and a solenoid detector in a laboratory setting. The current experimental setup is benchmarked using water and 13C-methanol with a single scan detection limit of 2 × 1020 spins (3 µl, 55M H2O) and detection limit of 2.9 × 1019 (200 µl, 617 mM 13C-methanol) spins with signal averaging. The system has a dynamic range of &gt;3 orders of magnitude. Investigations of room-temperature relaxation dynamics of 13C-methanol show that sample dilution can be used in lieu of sample heating to acquire spectra with linewidths comparable to high-temperature spectra. These results indicate that the T1 and T2 mechanisms are governed by both the proton exchange rate and the dissolved oxygen in the sample. Finally, a 2D correlation spectroscopy experiment is reported, performed in the strong coupling regime that resolves the multiple resonances associated with the heteronuclear J-coupling. The spectrum was collected using 10 times less sample and in less than half the time from previous reports in the strong coupling limit.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5130391</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7667-9521</orcidid><orcidid>https://orcid.org/0000-0003-2076-1264</orcidid><orcidid>https://orcid.org/0000-0002-3139-2882</orcidid><orcidid>https://orcid.org/0000-0001-8427-3513</orcidid><orcidid>https://orcid.org/0000-0002-8626-5987</orcidid><orcidid>https://orcid.org/0000-0002-7275-3314</orcidid><orcidid>https://orcid.org/0000-0003-1135-4130</orcidid><orcidid>https://orcid.org/0000-0003-2956-7505</orcidid><orcidid>https://orcid.org/0000000176679521</orcidid><orcidid>https://orcid.org/0000000329567505</orcidid><orcidid>https://orcid.org/0000000311354130</orcidid><orcidid>https://orcid.org/0000000231392882</orcidid><orcidid>https://orcid.org/0000000184273513</orcidid><orcidid>https://orcid.org/0000000320761264</orcidid><orcidid>https://orcid.org/0000000272753314</orcidid><orcidid>https://orcid.org/0000000286265987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2020-05, Vol.91 (5), p.054103-054103
issn 0034-6748
1089-7623
language eng
recordid cdi_osti_scitechconnect_1617094
source AIP Journals Complete; Alma/SFX Local Collection
subjects Actuators
Coupling (molecular)
Dilution
Heat exchange
High temperature
Magnetic fields
Magnetic induction
Methanol
NMR
Nuclear magnetic resonance
Room temperature
Scientific apparatus & instruments
Signal averaging
Solenoids
Spectra
Spectrum analysis
Structural analysis
title Design and implementation of a J-coupled spectrometer for multidimensional structure and relaxation detection at low magnetic fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20implementation%20of%20a%20J-coupled%20spectrometer%20for%20multidimensional%20structure%20and%20relaxation%20detection%20at%20low%20magnetic%20fields&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Kaseman,%20Derrick%20C.&rft.date=2020-05-01&rft.volume=91&rft.issue=5&rft.spage=054103&rft.epage=054103&rft.pages=054103-054103&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5130391&rft_dat=%3Cproquest_osti_%3E2409190675%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397913548&rft_id=info:pmid/&rfr_iscdi=true