Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain
Oxidation of sulfide ores in the Iberian Pyrite Belt region leads to the presence of extremely high concentration of dissolved heavy metals (HMs) in the acidic water of the Rio Tinto. Fe(II) is microbially oxidized resulting in the formation of suspended particulate matter (SPM) consisting of microb...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2020-05, Vol.718 (C), p.137294-137294, Article 137294 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137294 |
---|---|
container_issue | C |
container_start_page | 137294 |
container_title | The Science of the total environment |
container_volume | 718 |
creator | Abramov, Sergey M. Tejada, Julian Grimm, Lars Schädler, Franziska Bulaev, Aleksandr Tomaszewski, Elizabeth J. Byrne, James M. Straub, Daniel Thorwarth, Harald Amils, Ricardo Kleindienst, Sara Kappler, Andreas |
description | Oxidation of sulfide ores in the Iberian Pyrite Belt region leads to the presence of extremely high concentration of dissolved heavy metals (HMs) in the acidic water of the Rio Tinto. Fe(II) is microbially oxidized resulting in the formation of suspended particulate matter (SPM) consisting of microbial cells and Fe(III) minerals with co-precipitated HMs. Although substantial amount of HM-bearing SPM is likely deposited to river sediment, a portion can still be transported through estuary to the coastal ocean. Therefore, the mechanisms of SPM formation and transport along the Rio Tinto are important for coastal-estuarine zone. In order to reveal these mechanisms, we performed diurnal sampling of Rio Tinto water, mineralogical and elemental analysis of sediment from the middle course and the estuary of the river. We identified two divergent but interrelated pathways of HM transfer. The first longitudinal pathway is the transport of SPM-associated metals such as As (6.58 μg/L), Pb (3.51 μg/L) and Cr (1.30 μg/L) to the coastal ocean. The second sedimentation pathway contributes to the continuous burial of HMs in the sediment throughout the river. In the middle course, sediment undergoes mineralogical transformations during early diagenesis and traps HMs (e.g. 1.6 mg/g of As, 1.23 mg/g of Pb and 0.1 mg/g of Cr). In the estuary, HMs are accumulated in a distinct anoxic layer of sediment (e.g. 1.5 mg/g of As, 2.09 mg/g of Pb and 0.04 mg/g of Cr). Our results indicate that microbially precipitated Fe(III) minerals (identified as ferrihydrite and schwertmannite) play a key role in maintaining these divergent HM pathways and as a consequence are crucial for HM mobility in the Rio Tinto.
[Display omitted]
•Acidophilic Fe(II) oxidizers form cell-Fe(III) mineral aggregates consisting of schwertmannite and ferrihydrite.•Sedimentation of suspended particulate matter lead to burial of heavy metals in the river and estuarine sediment.•Up to 100% of As and Cr can be transported to the estuary of the Rio Tinto by suspended particulate matter. |
doi_str_mv | 10.1016/j.scitotenv.2020.137294 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1616612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969720308044</els_id><sourcerecordid>2365186247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-1c70de3658ce83d5cafae6b2e2b6aba13fbedb3a13a70aa1693cdecad5ad1cda3</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYModq1-BQ0-Veis-bObzDyW0upCQaj1OdxJ7rhZd5I1yS7025thal8bAgnJ79x7OYeQT5wtOePq626ZrS-xYDgtBRP1VWrRrV6RBW9113Am1GuyYGzVNp3q9Bl5l_OO1aVb_pacScE63Uq9IOY-7pHGgfY-_sbgLb3Fi81m84WOPmCCfaZQN80-_KEQHLWQksc0SbYIp0c6YpkoH2jZIr33kT74UOIl_XkAH96TN0P9xg9P5zn5dXvzcP29ufvxbXN9ddfYNZel4VYzh1KtW4utdGsLA6DqBYpeQQ9cDj26XtYLaAbAVSetQwtuDY5bB_KcfJ7rxly8mcxBu7UxBLTFcMWV4qJCFzN0SPHvEXMxo88W93sIGI_ZiDoAb5VY6YrqGbUp5pxwMIfkR0iPhjMzRWB25jkCM0Vg5giq8uNTk2M_onvW_fe8AlczgNWPU_VyKoTBovNpmtZF_2KTf-lNnB4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365186247</pqid></control><display><type>article</type><title>Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abramov, Sergey M. ; Tejada, Julian ; Grimm, Lars ; Schädler, Franziska ; Bulaev, Aleksandr ; Tomaszewski, Elizabeth J. ; Byrne, James M. ; Straub, Daniel ; Thorwarth, Harald ; Amils, Ricardo ; Kleindienst, Sara ; Kappler, Andreas</creator><creatorcontrib>Abramov, Sergey M. ; Tejada, Julian ; Grimm, Lars ; Schädler, Franziska ; Bulaev, Aleksandr ; Tomaszewski, Elizabeth J. ; Byrne, James M. ; Straub, Daniel ; Thorwarth, Harald ; Amils, Ricardo ; Kleindienst, Sara ; Kappler, Andreas ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Oxidation of sulfide ores in the Iberian Pyrite Belt region leads to the presence of extremely high concentration of dissolved heavy metals (HMs) in the acidic water of the Rio Tinto. Fe(II) is microbially oxidized resulting in the formation of suspended particulate matter (SPM) consisting of microbial cells and Fe(III) minerals with co-precipitated HMs. Although substantial amount of HM-bearing SPM is likely deposited to river sediment, a portion can still be transported through estuary to the coastal ocean. Therefore, the mechanisms of SPM formation and transport along the Rio Tinto are important for coastal-estuarine zone. In order to reveal these mechanisms, we performed diurnal sampling of Rio Tinto water, mineralogical and elemental analysis of sediment from the middle course and the estuary of the river. We identified two divergent but interrelated pathways of HM transfer. The first longitudinal pathway is the transport of SPM-associated metals such as As (6.58 μg/L), Pb (3.51 μg/L) and Cr (1.30 μg/L) to the coastal ocean. The second sedimentation pathway contributes to the continuous burial of HMs in the sediment throughout the river. In the middle course, sediment undergoes mineralogical transformations during early diagenesis and traps HMs (e.g. 1.6 mg/g of As, 1.23 mg/g of Pb and 0.1 mg/g of Cr). In the estuary, HMs are accumulated in a distinct anoxic layer of sediment (e.g. 1.5 mg/g of As, 2.09 mg/g of Pb and 0.04 mg/g of Cr). Our results indicate that microbially precipitated Fe(III) minerals (identified as ferrihydrite and schwertmannite) play a key role in maintaining these divergent HM pathways and as a consequence are crucial for HM mobility in the Rio Tinto.
[Display omitted]
•Acidophilic Fe(II) oxidizers form cell-Fe(III) mineral aggregates consisting of schwertmannite and ferrihydrite.•Sedimentation of suspended particulate matter lead to burial of heavy metals in the river and estuarine sediment.•Up to 100% of As and Cr can be transported to the estuary of the Rio Tinto by suspended particulate matter.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2020.137294</identifier><identifier>PMID: 32097837</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Contaminated river ; Estuary ; Heavy metal ; Microbial Fe(II) oxidation ; Rio Tinto ; Suspended particulate matter</subject><ispartof>The Science of the total environment, 2020-05, Vol.718 (C), p.137294-137294, Article 137294</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-1c70de3658ce83d5cafae6b2e2b6aba13fbedb3a13a70aa1693cdecad5ad1cda3</citedby><cites>FETCH-LOGICAL-c513t-1c70de3658ce83d5cafae6b2e2b6aba13fbedb3a13a70aa1693cdecad5ad1cda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scitotenv.2020.137294$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32097837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1616612$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Abramov, Sergey M.</creatorcontrib><creatorcontrib>Tejada, Julian</creatorcontrib><creatorcontrib>Grimm, Lars</creatorcontrib><creatorcontrib>Schädler, Franziska</creatorcontrib><creatorcontrib>Bulaev, Aleksandr</creatorcontrib><creatorcontrib>Tomaszewski, Elizabeth J.</creatorcontrib><creatorcontrib>Byrne, James M.</creatorcontrib><creatorcontrib>Straub, Daniel</creatorcontrib><creatorcontrib>Thorwarth, Harald</creatorcontrib><creatorcontrib>Amils, Ricardo</creatorcontrib><creatorcontrib>Kleindienst, Sara</creatorcontrib><creatorcontrib>Kappler, Andreas</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Oxidation of sulfide ores in the Iberian Pyrite Belt region leads to the presence of extremely high concentration of dissolved heavy metals (HMs) in the acidic water of the Rio Tinto. Fe(II) is microbially oxidized resulting in the formation of suspended particulate matter (SPM) consisting of microbial cells and Fe(III) minerals with co-precipitated HMs. Although substantial amount of HM-bearing SPM is likely deposited to river sediment, a portion can still be transported through estuary to the coastal ocean. Therefore, the mechanisms of SPM formation and transport along the Rio Tinto are important for coastal-estuarine zone. In order to reveal these mechanisms, we performed diurnal sampling of Rio Tinto water, mineralogical and elemental analysis of sediment from the middle course and the estuary of the river. We identified two divergent but interrelated pathways of HM transfer. The first longitudinal pathway is the transport of SPM-associated metals such as As (6.58 μg/L), Pb (3.51 μg/L) and Cr (1.30 μg/L) to the coastal ocean. The second sedimentation pathway contributes to the continuous burial of HMs in the sediment throughout the river. In the middle course, sediment undergoes mineralogical transformations during early diagenesis and traps HMs (e.g. 1.6 mg/g of As, 1.23 mg/g of Pb and 0.1 mg/g of Cr). In the estuary, HMs are accumulated in a distinct anoxic layer of sediment (e.g. 1.5 mg/g of As, 2.09 mg/g of Pb and 0.04 mg/g of Cr). Our results indicate that microbially precipitated Fe(III) minerals (identified as ferrihydrite and schwertmannite) play a key role in maintaining these divergent HM pathways and as a consequence are crucial for HM mobility in the Rio Tinto.
[Display omitted]
•Acidophilic Fe(II) oxidizers form cell-Fe(III) mineral aggregates consisting of schwertmannite and ferrihydrite.•Sedimentation of suspended particulate matter lead to burial of heavy metals in the river and estuarine sediment.•Up to 100% of As and Cr can be transported to the estuary of the Rio Tinto by suspended particulate matter.</description><subject>Contaminated river</subject><subject>Estuary</subject><subject>Heavy metal</subject><subject>Microbial Fe(II) oxidation</subject><subject>Rio Tinto</subject><subject>Suspended particulate matter</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rFDEUxYModq1-BQ0-Veis-bObzDyW0upCQaj1OdxJ7rhZd5I1yS7025thal8bAgnJ79x7OYeQT5wtOePq626ZrS-xYDgtBRP1VWrRrV6RBW9113Am1GuyYGzVNp3q9Bl5l_OO1aVb_pacScE63Uq9IOY-7pHGgfY-_sbgLb3Fi81m84WOPmCCfaZQN80-_KEQHLWQksc0SbYIp0c6YpkoH2jZIr33kT74UOIl_XkAH96TN0P9xg9P5zn5dXvzcP29ufvxbXN9ddfYNZel4VYzh1KtW4utdGsLA6DqBYpeQQ9cDj26XtYLaAbAVSetQwtuDY5bB_KcfJ7rxly8mcxBu7UxBLTFcMWV4qJCFzN0SPHvEXMxo88W93sIGI_ZiDoAb5VY6YrqGbUp5pxwMIfkR0iPhjMzRWB25jkCM0Vg5giq8uNTk2M_onvW_fe8AlczgNWPU_VyKoTBovNpmtZF_2KTf-lNnB4</recordid><startdate>20200520</startdate><enddate>20200520</enddate><creator>Abramov, Sergey M.</creator><creator>Tejada, Julian</creator><creator>Grimm, Lars</creator><creator>Schädler, Franziska</creator><creator>Bulaev, Aleksandr</creator><creator>Tomaszewski, Elizabeth J.</creator><creator>Byrne, James M.</creator><creator>Straub, Daniel</creator><creator>Thorwarth, Harald</creator><creator>Amils, Ricardo</creator><creator>Kleindienst, Sara</creator><creator>Kappler, Andreas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20200520</creationdate><title>Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain</title><author>Abramov, Sergey M. ; Tejada, Julian ; Grimm, Lars ; Schädler, Franziska ; Bulaev, Aleksandr ; Tomaszewski, Elizabeth J. ; Byrne, James M. ; Straub, Daniel ; Thorwarth, Harald ; Amils, Ricardo ; Kleindienst, Sara ; Kappler, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-1c70de3658ce83d5cafae6b2e2b6aba13fbedb3a13a70aa1693cdecad5ad1cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Contaminated river</topic><topic>Estuary</topic><topic>Heavy metal</topic><topic>Microbial Fe(II) oxidation</topic><topic>Rio Tinto</topic><topic>Suspended particulate matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abramov, Sergey M.</creatorcontrib><creatorcontrib>Tejada, Julian</creatorcontrib><creatorcontrib>Grimm, Lars</creatorcontrib><creatorcontrib>Schädler, Franziska</creatorcontrib><creatorcontrib>Bulaev, Aleksandr</creatorcontrib><creatorcontrib>Tomaszewski, Elizabeth J.</creatorcontrib><creatorcontrib>Byrne, James M.</creatorcontrib><creatorcontrib>Straub, Daniel</creatorcontrib><creatorcontrib>Thorwarth, Harald</creatorcontrib><creatorcontrib>Amils, Ricardo</creatorcontrib><creatorcontrib>Kleindienst, Sara</creatorcontrib><creatorcontrib>Kappler, Andreas</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abramov, Sergey M.</au><au>Tejada, Julian</au><au>Grimm, Lars</au><au>Schädler, Franziska</au><au>Bulaev, Aleksandr</au><au>Tomaszewski, Elizabeth J.</au><au>Byrne, James M.</au><au>Straub, Daniel</au><au>Thorwarth, Harald</au><au>Amils, Ricardo</au><au>Kleindienst, Sara</au><au>Kappler, Andreas</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2020-05-20</date><risdate>2020</risdate><volume>718</volume><issue>C</issue><spage>137294</spage><epage>137294</epage><pages>137294-137294</pages><artnum>137294</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Oxidation of sulfide ores in the Iberian Pyrite Belt region leads to the presence of extremely high concentration of dissolved heavy metals (HMs) in the acidic water of the Rio Tinto. Fe(II) is microbially oxidized resulting in the formation of suspended particulate matter (SPM) consisting of microbial cells and Fe(III) minerals with co-precipitated HMs. Although substantial amount of HM-bearing SPM is likely deposited to river sediment, a portion can still be transported through estuary to the coastal ocean. Therefore, the mechanisms of SPM formation and transport along the Rio Tinto are important for coastal-estuarine zone. In order to reveal these mechanisms, we performed diurnal sampling of Rio Tinto water, mineralogical and elemental analysis of sediment from the middle course and the estuary of the river. We identified two divergent but interrelated pathways of HM transfer. The first longitudinal pathway is the transport of SPM-associated metals such as As (6.58 μg/L), Pb (3.51 μg/L) and Cr (1.30 μg/L) to the coastal ocean. The second sedimentation pathway contributes to the continuous burial of HMs in the sediment throughout the river. In the middle course, sediment undergoes mineralogical transformations during early diagenesis and traps HMs (e.g. 1.6 mg/g of As, 1.23 mg/g of Pb and 0.1 mg/g of Cr). In the estuary, HMs are accumulated in a distinct anoxic layer of sediment (e.g. 1.5 mg/g of As, 2.09 mg/g of Pb and 0.04 mg/g of Cr). Our results indicate that microbially precipitated Fe(III) minerals (identified as ferrihydrite and schwertmannite) play a key role in maintaining these divergent HM pathways and as a consequence are crucial for HM mobility in the Rio Tinto.
[Display omitted]
•Acidophilic Fe(II) oxidizers form cell-Fe(III) mineral aggregates consisting of schwertmannite and ferrihydrite.•Sedimentation of suspended particulate matter lead to burial of heavy metals in the river and estuarine sediment.•Up to 100% of As and Cr can be transported to the estuary of the Rio Tinto by suspended particulate matter.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32097837</pmid><doi>10.1016/j.scitotenv.2020.137294</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2020-05, Vol.718 (C), p.137294-137294, Article 137294 |
issn | 0048-9697 1879-1026 |
language | eng |
recordid | cdi_osti_scitechconnect_1616612 |
source | Access via ScienceDirect (Elsevier) |
subjects | Contaminated river Estuary Heavy metal Microbial Fe(II) oxidation Rio Tinto Suspended particulate matter |
title | Role of biogenic Fe(III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20biogenic%20Fe(III)%20minerals%20as%20a%20sink%20and%20carrier%20of%20heavy%20metals%20in%20the%20Rio%20Tinto,%20Spain&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Abramov,%20Sergey%20M.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2020-05-20&rft.volume=718&rft.issue=C&rft.spage=137294&rft.epage=137294&rft.pages=137294-137294&rft.artnum=137294&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2020.137294&rft_dat=%3Cproquest_osti_%3E2365186247%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365186247&rft_id=info:pmid/32097837&rft_els_id=S0048969720308044&rfr_iscdi=true |